文档介绍:--------------------------校验:_____________-----------------------日期:_____________人教版初中数学不等式与不等式组知识点及习题总汇-初中数学七年级知识点总结09不等式与不等式组(含答案)【编者按】本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。、“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。:使不等式成立的未知数的值,叫做不等式的解。:一个含有未知数的不等式的所有解,组成这个不等式的解集。:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。:用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,+2y≥2xy,sinx≤1,ex>0,2x<3,5x≠5等。不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。:①不等式F(x)<G(x)与不等式G(x)>F(x)同解。②如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,那么不等式F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。③如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H(x)G(x)同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H(x)F(x)>H(x)G(x)同解。④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z。⑥如果x>y,m>n,那么x+m>y+n(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数)选择题(本大题共12小题,每小题2分,共24分)()-9x≥x2+7x-+<+y>+x+9≥-3≤-3≥-3<-3>,列出相应的不等式,其中错误的是():a+2>:a-3>2