文档介绍:指数函数、对数函数、幂函数的图像与性质(一)(1)根式的概念根式的概念符号表示备注如果,那么叫做的次方根当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数零的次方根是零当为偶数时,正数的次方根有两个,它们互为相反数负数没有偶次方根n为奇数n为偶数(2).两个重要公式①;②(注意必须使有意义)。(1)幂的有关概念①正数的正分数指数幂:。②正数的负分数指数幂:③0的正分数指数幂等于0,:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。(2)有理数指数幂的性质①aras=ar+s(a>0,r、s∈Q)。②(ar)s=ars(a>0,r、s∈Q)。③(ab)r=arbs(a>0,b>0,r∈Q)。.=axa>10<a<1图象定义域R值域(0,+)性质(1)过定点(0,1)(2)当x>0时,y>1。x<0时,0<y<1(2)当x>0时,0<y<1。x<0时,y>1(3)在(-,+)上是增函数(3)在(-,+)上是减函数注:如图所示,是指数函数(1)y=ax,(2)y=bx,(3),y=cx(4),y=dx的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。(二)对数与对数函数1、对数的概念(1)对数的定义如果,那么数叫做以为底,的对数,记作,其中叫做对数的底数,叫做真数。(2)几种常见对数对数形式特点记法一般对数底数为常用对数底数为10自然对数底数为e2、对数的性质与运算法则(1)对数的性质():①,②,③,④。(2)对数的重要公式:①换底公式:;②。(3)对数的运算法则:如果,那么①;②;③;④。3、对数函数的图象与性质图象性质(1)定义域:(0,+)(2)值域:R(3)当x=1时,y=0即过定点(1,0)(4)当时,;当时,(4)当时,;当时,(5)在(0,+)上为增函数(5)在(0,+)上为减函数注:确定图中各函数的底数a,b,c,d与1的大小关系提示:作一直线y=1,该直线与四个函数图象交点的横坐标即为它们相应的底数。∴0<c<d<1<a<、反函数指数函数y=ax与对数函数y=logax互为反函数,它们的图象关于直线y=x对称。(三)幂函数1、幂函数的定义形如y=xα(a∈R)的函数称为幂函数,其中x是自变量,α为常数注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。2、幂函数的图象注:在上图第一象限中如何确定y=x3,y=x2,y=x,,y=x-1方法:可画出x=x0;当x0>1时,按交点的高低,从高到低依次为y=x3,y=x2,y=x,,y=x-1;当0<x0<1时,按交点的高低,从高到低依次为y=x-1,,y=x,y=x2,y=x3。3、幂函数的性质y=xy=x2y=x3y=x-1定义域RRR[0,)值域R[0,)R[0,)奇偶性奇偶奇非奇非偶奇单调性增x∈[0,)时,增;x∈时,减增增x∈(0,+)时,减;x∈(-,0)时,减定点(1,1)三:例题诠释,举一反三知识点1:指数幂的化简与求值例1.(200