文档介绍::液晶光阀特性研究实验目的:从基本原理的角度出发,测量液晶的相关曲线,理解并解释相关现象。实验原理:,棱镜是在光学玻璃棱镜的体对角面上镀制多层介质膜,再将两块棱镜的分光面胶合起来,并在通光面上镀制增透膜,以降低光通过棱镜时的反射损耗。对于折射率不同的两种材料的交界面,可以找到一个入射角,使之满足布儒斯特角条件,在这样一个条件下,激光由棱镜左侧入射后,在右侧透射的光为p分量光(经过镀膜后使投射光中没有s分量,在侧面反射的光为s分量光。偏光分束镜的膜系设计要求,必须选择折射率满足一定的关系的膜料和基底材料,使p光全透过,。;本实验中使用的是反射式的液晶光阀,先解释几个名词(1液晶:液晶的分子为有机分子,大多为棒状,即它的长度尺寸为直径尺寸的5倍以上。由于分子结构的这种对称性,使得分子集合体在没有外界干扰的情况下形成分子相互平行排列,以使系统自由能最小。但是,液晶具有液体的流动性,不可能脱离固体容器的盛载,但固体容器表面往往给液晶带来干扰,破坏液晶整体一致的排列性,而变成一微米至数十微米取向不同的小畴。所以在制作液晶器件时,一定要在基板上附上液晶取向膜,以保持液晶整体的排列。(2取向膜:液晶器件的玻璃基板最表层上都要有一层取向膜,其作用是使液晶沿预定方向取向。这一层膜虽薄,约在50~150纳米之间,但却是液晶器件的关键部分。液晶内部的取向通常服从表面的取向,如果不服从就会产生畸变,使体系能量增高。所以研究表面取向成为研究液晶器件的最重要部分(3方向矢:液晶器件的玻璃基板最表层上的取向膜的方向液晶光阀中的关键部分就是液晶,其物理特性介于固体和液体之间;其结构介于固体和液体之间,,又有晶体的光学各向异性,因而称为液晶。它既不同于不能流动的晶体,也有别于光学各向同性的液体,它的特性既有晶体的取向特性,,又导致电、磁、光、,:向列相、胆甾相、近晶相。向列相液晶的排列方式分子重心无平移周期性,具有分子取向有序性。胆甾相实际是向列相的特殊形式,分子重心无平移周期性,具有分子取向有序性,此外还有与分子取向垂直的螺旋轴,分子取向沿轴旋转、即连续扭曲状态。向列相液晶和胆甾相液晶目前已具有非常广泛的应用,尤其是在液晶平板显示器上的应用,市场极大。液晶显示器并非液晶本身发光,它是将光源光进行调制显示图像,因此无闪烁,长期观看无疲劳感,是有利于人眼健康的显示器。但向列相液晶的响应速度较慢,响应时间一般超过20毫秒,最适合做便携式电脑的显示器,以及摄像机上的取景器,车载导航仪等,做液晶电视一直存在困难,但近年来,通过技术的改进,液晶电视也已面市。近晶相不但具有分子取向有序,而且还具有分子层状结构,分子重心可在层法线方向上周期平移,但在分子层内仍无平移周期。近晶相更接近晶体结构。实际在近晶相中又可细分很多相态,但多数都没有应用,只有对近晶相中的铁电相的研究比较透彻,目前已有很多尝试性应用。铁电液晶分子具有固有偶极矩,响应速度大约比向列相液晶快3个数量级,但其器件的制备技术要求很高。液晶的主要特征之一,是象光学单轴晶体那样,由于折射率各向异性而显示出双折射性(doublerefraction。单轴晶体有0n和en这两个不同的主折射率,0n和en分别是电光矢量的振动方向与晶体光轴相垂直的寻常光(ordinarylight及与晶体光轴平行的非常光(extraordinarylight的折射率在向列型液晶液晶中,因为单轴晶体的光铀相当于分子长轴方向的指向矢n的方向,⎩⎨⎧==⊥//nnnneo即折射率各向异性n∆可由下式求得:⊥-=-=∆nnnnnoe//向列型液晶在各个空间方向上的折射率的大小如图2,对于寻常光表现为球面,对于非常光则表现为旋转椭球体;前者的折射率0n常常要比后者的折射率en小,,⊥>nn//,n∆是正值,(竖直向上方向一致的指向矢n,我们假定电矢量的振动方向与x成θ角,而沿z方向(水平向右入射的的电场矢量为0E的线偏振光,设0=z时的电矢量在x、y方向上的分量为xE、yE,则进行到z时的入射线偏振光的状态,可用下式表示。δδθ