1 / 22
文档名称:

多重比较.doc

格式:doc   大小:475KB   页数:22页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

多重比较.doc

上传人:业精于勤 2020/3/7 文件大小:475 KB

下载得到文件列表

多重比较.doc

文档介绍

文档介绍:四、多重比较F值显著或极显著,否定了无效假设HO,表明试验的总变异主要来源于处理间的变异,试验中各处理平均数间存在显著或极显著差异,但并不意味着每两个处理平均数间的差异都显著或极显著,也不能具体说明哪些处理平均数间有显著或极显著差异,哪些差异不显著。因而,有必要进行两两处理平均数间的比较,以具体判断两两处理平均数间的差异显著性。统计上把多个平均数两两间的相互比较称为多重比较(parisons)。多重比较的方法甚多,常见的有最小显著差数法(LSD法)和最小显著极差法(LSR法),现分别介绍如下。(一)最小显著差数法(LSD法,leastsignificantdifference)此法的基本作法是:在F检验显著的前提下,先计算出显著水平为α的最小显著差数,然后将任意两个处理平均数的差数的绝对值与其比较。若>LSDa时,则与在α水平上差异显著;反之,则在α水平上差异不显著。最小显著差数由(6-17)式计算。(6-17)式中:为在F检验中误差自由度下,显著水平为α的临界t值,为均数差异标准误,由(6-18)式算得。(6-18)其中为F检验中的误差均方,n为各处理的重复数。当显著水平α=,从t值表中查出和,代入(6-17)式得:(6-19)利用LSD法进行多重比较时,可按如下步骤进行:(1)列出平均数的多重比较表,比较表中各处理按其平均数从大到小自上而下排列;(2)计算最小显著差数和;(3)将平均数多重比较表中两两平均数的差数与、比较,作出统计推断。对于【】,各处理的多重比较如表6-4所示。表6-4四种饲料平均增重的多重比较表(LSD法)处理平均数---******:,在α=。因为,;查t值表得:(dfe)=(16)=,(dfe)=(16)=,-4中的6个差数与,比较:小于者不显著,在差数的右上方标记“ns”,或不标记符号;介于与之间者显著,在差数的右上方标记“*”;大于者极显著,在差数的右上方标记“**”。、、,、。表明A1饲料对鱼的增重效果极显著高于A2和A3,显著高于A4;A4饲料对鱼的增重效果极显著高于A3饲料;A4与A2、A2与A3的增重效果差异不显著,以A1饲料对鱼的增重效果最佳。关于法的应用有以下几点说明:1、法实质上就是检验法。它是将检验中由所求得的之绝对值与临界值的比较转为将各对均数差值的绝对值与最小显著差数的比较而作出统计推断的。可是,由于法是利用F检验中的误差自由度查临界值,利用误差均方计算均数差异标准误,因而法又不同于每次利用两组数据进行多个平均数两两比较的检验法。它解决了本章开头指出的检验法检验过程烦琐,无统一的试验误差且估计误差的精确性和检验的灵敏性低这两个问题。但法并未解决推断的可靠性降低、犯I型错误的概率变大的问题。2、有人提出,与检验任何两个均数间的差异相比较,法适用于各处理组与对照组比较而处理组间不进行比较的比较形式。实际上关于这种形式的比较更适用的方法有顿纳特(t)法(关于此法,读者可参阅其它有关统计书籍)。3、因为法实质上是检验,故有人指出其最适宜的比较形式是:在进行试验设计时就确定各处理只是固定的两个两个相比,每个处理平均数在比较中只比较一次。例如,在一个试验中共有4个处理,设计时已确定只是处理1与处理2、处理3与处理4(或1与3、2与4;或1与4、2与3)比较,而其它的处理间不进行比较。因为这种比较形式实际上不涉及多个均数的极差问题,因此不会增大犯I型错误的概率。综上所述,对于多个处理平均数所有可能的两两比较,法的优点在于方法比较简便,克服一般检验法所具有的某些缺点,可是由于没有考虑相互比较的处理平均数依数值大小排列上的秩次,故仍有推断可靠性低、犯I型错误概率增大的问题。为克服此弊病,统计学家提出了最小显著极差法。(二)最小显著极差法(LSR法,Leastsignificantranges)法的特点是把平均数的差数看成是平均数的极差,根据极差范围内所包含的处理数(称为秩次距)的不同而采用不同的检验尺度,以克服法的不足。这些在显著水平α上依秩次距的不同而采用的不同的检验尺度叫做最小显著极差。例如有10个要相互比较,先将10个依其数值大小顺次排列,两极端平均数的差数(极差)的显著性,由其差数是否大于秩次距=10时的最小显著极差决定(≥为显著,<为不显著=;而后是