文档介绍:文档仅供参考,不当之处,请联系改正。:..精解常见逻辑用语目标认知:考试大纲要求:;了解逻辑联结词“或”、“且”、“非”“若p,则q”的形式及其逆命题、否命题与逆否命题,、;:充分条件与必要条件的判定难点:根据命题关系或充分(或必要)条件进行逻辑推理。知识要点梳理:知识点一:命题:: 一般地,我们把用语言、符号或式子表示的,能够判断真假的语句叫做命题.(1),如p,q,r,m,n等.(2)命题有真假之分,正确的命题叫做真命题,、公理、定理等都是真命题(3)命题“”的真假判定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。如:一定推出.②若要判断命题“”是一个假命题,:“不一定等于3”不能判定真假,: “或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题.(2)复合命题的构成形式: ①p或q;②p且q;③非p(即命题p的否定).(3)复合命题的真假判断(利用真值表):非真真假真真真假假真假假真真真假假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”; ②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。③“非p”与p的真假相反. 注意:(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。能够类比于集合中“或”.(2)“或”、“且”联结的命题的否定形式:“p或q”的否定是“p且q”;“p且q”的否定是“p或q”.(3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。,若是,判断出其真假,若不是,说明理由。(1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:,方程无实根.(4)(5)(江西卷)下列命题是真命题的为(),则 ,,,则3(广东)已知命题所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的是()A. B. C. (北京)若是真命题,是假命题,则()(A)是真命题(B)是假命题(C)是真命题(D)是真命题知识点二::用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为: 原命题:若p则q;逆命题:若q则p; 否命题:若p则q;逆否命题:: ①,是命题转化的依据和途径之一. ②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径. 除①、②之外,四种命题中其它两个命题的真