文档介绍:得:,3),上式可写为时微分方程左端只有含冲激,其余均为有限值,故有得4)原方程可写为解:①求解之:②求设带如原微分方程有即故:对原微分方程两端从到关于t积分有有:解之:③求全响应。(2),解:①。(1)y(k+2)+3y(k+1)+2y(k)=0,解:特征方程r(r+1)(r+2)=0特征根:y(k)=代入初始条件解得(2)y(k+2)+2y(k+1)+2y(k)=:k(3)y(k+2)+2y(k+1)+y(k)=0解:k0(4)解:故k>=0(5)解:即特征根故=k>=0(6),解:即带入初始条件有解之得:,故:k>=(1)解:即:解之得:故:(2)解:故:(3)解:(1)解:(a)解:(b)解:由图知其中:故有:故×(1)(2),求(1)(2)(3)(4)H(p)==h(t)=(k)(1)y(k)+2y(k-1)=f(k-1)解:H(E)=(2)y(k+2)+3y(k+1)+2y(k)=f(k+1)+f(k)H(E)=(3)y(k)+y(k-1)+y(k-2)=f(k)解:H(E)=h(k)=H(E)E=(E)