文档介绍:北师大版八年级下册数学考试知识点第一章三角形的证明一、全等三角形的判定及性质※1性质:全等三角形对应角相等、对应边相等※2判定:①判定一般三角形全等:(SSS、SAS、ASA、AAS).②判定直角三角形全等独有的方法:有斜边和一条直角边对应相等的两个直角三角形全等,※:等腰三角形的两个底角相等(等边对等角).※:有两个角相等的三角形是等腰三角形(等角对等边).※:等腰三角形顶角平分线、底边中线、底边上的高互相重合(即“三线合一”).※:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴. 判定定理:(1)有一个角是60°的等腰三角形是等边三角形;(2)※、b、c满足关系=,那么这个三角形是直角三角形(勾股定理的逆定理)(满足的三个正整数,称为勾股数:,常见的勾股数有:(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17(5)7,24,25(6)9,40,41※°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半.※。要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”. ②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,※:线段垂直平分线上的点到线段两端点的距离相等. 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.※,※:角平分线上的点到角两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.※:三角形的三条角平分线相交于一点,:任意边形的内角和为(≥3);※,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变。(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。※:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;(由此可见,要比较两个实数的大小,只要考察它们的差就可以了)(a、b为实数,且a<b)一元一次不等式解集图示叙述语言表达x>b同大取大x>aa<x<、