1 / 18
文档名称:

动态规划.docx

格式:docx   大小:40KB   页数:18页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

动态规划.docx

上传人:wxc6688 2020/11/25 文件大小:40 KB

下载得到文件列表

动态规划.docx

文档介绍

文档介绍:初识动态规划算法
初识动态规划算法
【日期】2005-5-25  【人气】118
【作者】admin  【来源】admin
 
多阶段决策过程(multistep decision process)是指这样一类特殊的活动过程,过程可以按时间顺序分解成若干个相互联系的阶段,在每一个阶段都需要做出决策,全部过程的决策是一个决策序列。动态规划(dynamic programming)算法是解决多阶段决策过程最优化问题的一种常用方法,难度比较大,技巧性也很强。利用动态规划算法,可以优雅而高效地解决很多贪婪算法或分治算法不能解决的问题。动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果,与贪婪算法不同的是,在贪婪算法中,每采用一次贪婪准则,便做出一个不可撤回的决策;而在动态规划算法中,还要考察每个最优决策序列中是否包含一个最优决策子序列,即问题是否具有最优子结构性质。
动态规划算法的有效性依赖于待求解问题本身具有的两个重要性质:最优子结构性质和子问题重叠性质。
1、最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。
2、子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的解题效率。
当我们已经确定待解决的问题需要用动态规划算法求解时,通常可以按照以下步骤设计动态规划算法:
1、分析问题的最优解,找出最优解的性质,并刻画其结构特征;
2、递归地定义最优值;
3、采用自底向上的方式计算问题的最优值;
4、根据计算最优值时得到的信息,构造最优解。
1~3步是动态规划算法解决问题的基本步骤,在只需要计算最优值的问题中,完成这三个基本步骤就可以了。如果问题需要构造最优解,还要执行第4步;此时,在第3步通常需要记录更多的信息,以便在步骤4中,有足够的信息快速地构造出最优解。
下面通过对具体实例的分析,帮助大家领会可用动态规划算法求解的问题应具有的两个性质以及动态规划算法的设计思想。
例:拦截导弹(问题来源:1999年全国青少年信息学(计算机)奥林匹克分区联赛高中组复赛试题第一题)
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000 的正整数),计算这套系统最多能拦截多少导弹,并依次输出被拦截的导弹飞来时候的高度。
样例:
INPUT
389 207 155 300 299 170 158 65 
OUTPUT
6(最多能拦截的导弹数)
389 300 299 170 158 65
分析:因为只有一套导弹拦截系统,并且这套系统除了第一发炮弹能到达任意高度外,以后的每一发炮弹都不能高于前一发炮弹的高度;所以,被拦截的导弹应该按飞来的高度组成一个非递增序列。题目要求我们计算这套系统最多能拦截的导弹数,并依次输出被拦截导弹的高度,实际上就是要求我们在导弹依次飞来的高度序列中寻找一个最长非递增子序列。
设X={x1,x2,…,xn}为依次飞来的导弹序列,Y={y1,y2,…,yk}为问题的最优解(即X的最长非递增子序列),s为问题的状态(表示导弹拦截系统当前发送炮弹能够到达的最大高度,初值为s=∞——第一发炮弹能够到达任意的高度)。如果y1=x1,即飞来的第一枚导弹被成功拦截。那么,根据题意“每一发炮弹都不能高于前一发的高度”,问题的状态将由s=∞变成s≤x1(x1为第一枚导弹的高度);在当前状态下,序列Y1={y2,…,yk}也应该是序列X1={x2,…,xn}的最长非递增子序列(大家用反证法很容易证明)。也就是说,在当前状态s≤x1下,问题的最优解Y所包含的子问题(序列X1)的解(序列Y1)也是最优的。这就是拦截导弹问题的最优子结构性质。
设D(i)为第i枚导弹被拦截之后,这套系统最多还能拦截的导弹

最近更新

2025工业品买卖合同书范本 15页

2025工程拆除合同书协议书书 17页

2025平房买卖协议书书范本 14页

2025年一级造价师题库500道标准卷 144页

2025年交管12123学法减分考试题库300道及完整.. 68页

2025年初级经济师题库700道a4版 191页

熔体的表面张力公开课获奖课件赛课一等奖课件.. 26页

人体体质公开课获奖课件赛课一等奖课件 82页

酒店组织管理心理学 250页

2025幼儿园转让协议书范文 14页

2025建筑工程材料合同范本 17页

2025房产公司劳动合同书模板精选 15页

2025承包合同厂区食堂承包合同样本 15页

2025最新协议书离婚申请书格式 13页

室外管网施工方案 (4) 15页

傅里叶级数的三角形式和傅里叶级数的指数形式.. 5页

毕业典礼穿搭指南-让你在毕业典礼上独具风采 24页

智慧物业,新篇章-科技领航物业管理新纪元 31页

品牌定位识别公开课获奖课件赛课一等奖课件 49页

数字能量公开课获奖课件赛课一等奖课件 23页

欧姆定律研课标公开课获奖课件赛课一等奖课件.. 23页

探索环境保护的创新解决方案-科学家演讲角色 22页

泸教版四年级数学上册期中测试卷及答案【一套.. 7页

苏教版一年级数学上册期中考试(加答案) 6页

苏教版一年级语文下册期末质量检测卷及答案 4页

苏教版二年级语文下册期末试卷A4打印版 4页

苏教版六年级语文下册期中考试卷及答案(下载).. 7页

苏教版四年级语文下册期末考试卷及答案(最新).. 7页

虚实结合手法公开课获奖课件赛课一等奖课件 18页

西师大版四年级数学上册期中考试题(完整版) 6页