文档介绍:主要内容
卷积神经网络—诞生背景与历程
卷积神经网络的结构
卷积神经网络应用—LeNet-5手写数字识别
*
卷积神经网络
*
深度学习的优势
深度学习通过学习一种深层非线性网络结构,只需简单的网络结构即可实现复杂函数的逼近,并展现了强大的从大量无标注样本集中学习数据集本质特征的能力。
深度学习能够获得可更好地表示数据的特征,同时由于模型的层次深)、表达能力强,因此有能力表示大规模数据。
对于图像、语音这种特征不明显(需要手工设计且很多没有直观的物理含义)的问题,深度模型能够在大规模训练数据上取得更好的效果。
*
卷积神经网络
*
卷积神经网络(Convolutional Neural Networks:CNN)是人工神经网络(ANN)的一种,是深度学习的一种学习算法。它在图像识别和分类、自然语言处理广告系统中都有应用。
 CNNs它利用空间关系减少需要学习的参数数目以提高一般前向BP算法的训练性能。CNNs作为一个深度学习架构提出是为了最小化数据的预处理要求。在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。这个方法能够获取对平移、缩放和旋转不变的观测数据的显著特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础的特征,例如定向边缘。
*
卷积神经网络
*
*
卷积神经网络
*
卷积神经网络的结构
卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。
*
卷积神经网络
*
输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。
*
卷积神经网络
*
C层为卷积层(Convolution),每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来
*
卷积神经网络
*
S层是采样层(subsampling)也叫池化层(pooling),网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。pooling的目的就是为了使参数量减少,使得特征映射具有某种不变性(旋转、平移、伸缩等)。
*
卷积神经网络
*
*
卷积神经网络
*
mean-pooling,即对邻域内特征点只求平均,max-pooling,即对邻域内特征点取最大。根据相关理论,特征提取的误差主要来自两个方面:(1)邻域大小受限造成的估计值方差增大;(2)卷积层参数误差造成估计均值的偏移。一般来说,mean-pooling能减小第一种误差,更多的保留图像的背景信息,max-pooling能减小第二种误差,更多的保留纹理信息。
*
卷积神经网络
*