文档介绍:2014年高考山东卷理科数学真题
:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,选择符合题目要求的选项。
已知是虚数单位,若与互为共轭复数,则
(A) (B) (C) (D)
设集合则
(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)
函数的定义域为
(A) (B) (C) (D)
4. 用反证法证明命题“设则方程至少有一个实根”时要做的假设是
(A)方程没有实根(B)方程至多有一个实根
(C)方程至多有两个实根(D)方程恰好有两个实根
已知实数满足,则下列关系式恒成立的是
(A) (B)
(C) (D)
(A)(B)(C)2(D)4
,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为
(A) (B) (C) (D)
,.若方程有两个不相等的实根,则实数k的取值范围是
(A)(B)(C)(D)
,的最小值为
(A)(B)(C)(D)
,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为
(A)(B)(C)(D)
:本大题共5小题,每小题5分,共25分,答案须填在题中横线上。
执行下面的程序框图,若输入的的值为1,
则输出的的值为。
在中,已知,当时,的面积为。
三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则。
若的展开式中项的系数为20,则的最小值为。
已知函数,对函数,定义关于的“对称函数”为函数,满足:对任意,两个点关于点对称,若是关于的“对称函数”,且恒成立,则实数的取值范围是。
:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
已知向量,函数,且的图像过
点和点.
(I)求的值;
(II)将的图像向左平移个单位后得到函数的图像,若图像上各最高点到点的距离的最小值为1,求的单调递增区间.
17.(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,,是线段的中点.
(I)求证:;
(II)若垂直于平面且,求平面和平面所成的角(锐角)的余弦值.
18.(本小题满分12分)
乒乓球台面被球网分成甲、