文档介绍:平面直角坐标系
一、本章的主要知识点ﻩ
(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);
2、注意:a、b的先后顺序对位置的影响。
(二)平面直角坐标系
1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ;
2、构成坐标系的各种名称;
3、各种特殊点的坐标特点。
(三)坐标方法的简单应用
1、用坐标表示地理位置;
2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:
平行于x轴(或横轴)的直线上的点的纵坐标相同;
平行于y轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的角平分线上的点的坐标特点:
第一、三象限角平分线上的点的横纵坐标相同;
第二、四象限角平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:
关于x轴对称的点的横坐标相同,纵坐标互为相反数
关于y轴对称的点的纵坐标相同,横坐标互为相反数
关于原点对称的点的横坐标、纵坐标都互为相反数
五、特殊位置点的特殊坐标:
坐标轴上
点P(x,y)
连线平行于
坐标轴的点
点P(x,y)在各象限
的坐标特点
象限角平分线上
的点
X轴
Y轴
原点
平行X轴
平行Y轴
第一象限
第二象限
第三象限
第四象限
第一、三象限
第二、四象限
(x,0)
(0,y)
(0,0)
纵坐标相同,横坐标不同
横坐标相同,纵坐标不同
x>0
y〉0
x〈0
y>0
x〈0
y〈0
x>0
y〈0
(m,m)
(m,-m)
六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:
建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
七、用坐标表示平移:见下图
P(x,y)
P(x,y-a)
P(x-a,y)
P(x+a,y)
P(x,y+a)
向上平移a个单位长度
向下平移a个单位长度
向右平移a个单位长度
向左平移a个单位长度
二、经典例题
知识一、坐标系的理解
例1、平面内点的坐标是( )
A 一个点 B 一个图形 C 一个数对 D 一个有序数对
学生自测
1.在平面内要确定一个点的位置,一般需要________个数据;
在空间内要确定一个点的位置,一般需要________个数据.
2、在平面直角坐标系内,下列说法错误的是( )
A 原点O不在任何象限内 B 原点O的坐标是0
C 原点O既在X轴上也在Y轴上 D 原点O在坐标平面内
知识二、已知坐标系中特殊位置上的点,求点的坐标
点在x轴上,坐标为(x,0)在x轴的负半轴上时,x<0, 在x轴的正半轴上时,x>0
点在y轴上,坐标为(0,y)在y轴的负半轴上时,y<0, 在y轴的正半轴上时,y>0
第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x,y)xy〉0
四象限角平分线上的点的横纵坐标相反(即在y= —x直线上);坐标点(x,y)xy<0
平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
例1 点P在轴上对应的实数是-3,则点P的坐标是 ,若点Q在轴上 ,对应的实数是,则点Q的坐标是 ,
例2 点P(a—1,2a—9)在x轴上,则P点坐标是 。
学生自测
1、点P(m+2,m—1)在y轴上,则点P的坐标是 .
2、已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为 .
3、 已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是 。
4。平行于x轴的直线上的点的纵坐标一定( )
A。大于0 B.小于0 C.相等
(3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .
(3)已知点P(3-x,1)在一、三象限夹角平分线上,则x= .
5.过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为( ).
A.(0,2) B.(2,0) C.(0,—3) D.(-3,0)