文档介绍:蛋白质与多肽一样,能够发生两性离解,也有等电点。在等电点时(Isoelectric point pI),蛋白质的溶解度最小,在电场中不移动。
在不同的pH环境下,蛋白质的电学性质不同。在外液pH低于等电点的溶液中,蛋白质粒子带正电荷,在电场中向负极移动;在外液pH高于等电点的溶液中,蛋白质粒子带负电荷,在电场中向正极移动。这种现象称为蛋白质电泳—(Electrophoresis)带电粒子在电场中移动的现象。
(1)蛋白质的两性离解和电泳现象
第五节:蛋白质的重要性质
电泳
蛋白质在等电点pH条件下,不发生电泳现象。利用蛋白质的电泳现象,可以将蛋白质进行分离纯化。
由于蛋白质的分子量很大(1-100nm),它在水中能够形成胶体溶液。蛋白质溶液具有胶体溶液的典型性质,如丁达尔现象、布郎运动等。
由于胶体溶液中的蛋白质不能通过半透膜,因此可以应用透析法将非蛋白的小分子杂质除去。
透析法:以半透膜提纯蛋白质的方法叫透析法
半透膜:只允许溶剂小分子通过,而溶质大分子不能通过,如羊皮纸、火棉胶、玻璃纸等
(2)蛋白质的胶体性质
蛋白质胶体溶液的稳定性与它的分子量大小、所带的电荷和水化作用有关。
改变溶液的条件,将影响蛋白质的溶解性质
在适当的条件下,蛋白质能够从溶液中沉淀出来。
定义:蛋白质在溶液中靠水膜和电荷保持其稳定性,水膜和电荷一旦除去,蛋白质溶液的稳定性就被破坏,蛋白质就会从溶液中沉淀下来,此现象即为蛋白质的沉淀作用。
(3)蛋白质的沉淀作用
在温和条件下,通过改变溶液的pH或电荷状况,使蛋白质从胶体溶液中沉淀分离。
在沉淀过程中,结构和性质都没有发生变化,在适当的条件下,可以重新溶解形成溶液,所以这种沉淀又称为非变性沉淀。
可逆沉淀是分离和纯化蛋白质的基本方法,如等电点沉淀法、盐析法和有机溶剂沉淀法等。
(3)蛋白质的沉淀作用
可逆沉淀
等电点沉淀法
盐析法:向蛋白质溶液中加入大量的中性盐(硫酸铵、硫酸钠、氯化钠)使蛋白质沉淀析出的现象(水与离子的相互作用增加了蛋白质表面的疏水补丁的相互作用;同时瓦解了以电荷为基础的蛋白质分子之间的作用)。分段盐析
盐溶:低浓度的中性盐可以增加蛋白质的溶解度,此现象叫盐溶。
有机溶剂沉淀法(脱去水化层、降低介电常数)。在低温下或缩短处理时间可防止或减缓变性)
(3)蛋白质的沉淀作用
可逆沉淀
在强烈沉淀条件下,不仅破坏了蛋白质胶体溶液的稳定性,而且也破坏了蛋白质的结构和性质,产生的蛋白质沉淀不可能再重新溶解于水。
由于沉淀过程发生了蛋白质的结构和性质的变化,所以又称为变性沉淀。
如加热沉淀(次级键)、强酸碱沉淀(影响荷电)、重金属盐沉淀(Hg2+、 Pb2+ 、Cu2+、 Ag2+)和生物碱试剂或某些酸类沉淀等都属于不可逆沉淀。
(3)蛋白质的沉淀作用
不可逆沉淀
天然蛋白质因受物理、化学因素的影响,使蛋白质分子的构象发生了异常变化,从而导致生物活性的丧失以及物理、化学性质的异常变化。这种现象称为蛋白质的变性(denaturation)。
(4)蛋白质的变性
蛋白质变性后的表现:生物活性丧失;溶解度降低,对于球状蛋白粘度增加;生化反应易进行;光吸收系数增大;组分和分子量不变。
:
温度(热、冷)
强酸、强碱
尿素和盐酸胍的影响(破坏分子内部氢键、破坏疏水效应)
H2N-C-NH2 H2N-C-NH2+Cl-
表面活性剂的影响:如十二烷基硫酸钠(SDS)
CH3-(CH2)10-CH2-O-S-O-.Na+ ()
O
NH2
o
o