1 / 8
文档名称:

九年级上册数学二次函数知识点汇总.doc

格式:doc   大小:445KB   页数:8页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

九年级上册数学二次函数知识点汇总.doc

上传人:tswng35 2021/5/16 文件大小:445 KB

下载得到文件列表

九年级上册数学二次函数知识点汇总.doc

相关文档

文档介绍

文档介绍:新人教版九年级上二次函数知识点总结
知识点一:二次函数的定义
1.二次函数的定义:
一般地,形如(是常数,)的函数,叫做二次函数.
其中是二次项系数,是一次项系数,是常数项.
知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶点

(1)二次函数基本形式的图象与性质:a的绝对值越大,抛物线的开口越小
(2)的图象与性质:上加下减
(3)的图象与性质:左加右减
(4)二次函数的图象与性质
3. 二次函数的图像与性质
(1)当时,抛物线开口向上,对称轴为,顶点坐标为.
当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.
(2)当时,抛物线开口向下,对称轴为,顶点坐标为.
当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.

(1)二次函数图象的画法
①画精确图五点绘图法(列表-描点-连线)
利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.
②画草图 抓住以下几点:开口方向,对称轴,与轴的交点,顶点.
(2)二次函数图象的平移
平移步骤:
将抛物线解析式转化成顶点式,确定其顶点坐标;
②可以由抛物线经过适当的平移得到具体平移方法如下:
平移规律:概括成八个字“左加右减,上加下减”.
(3)用待定系数法求二次函数的解析式
①一般式:.已知图象上三点或三对、的值,通常选择一般式.
②顶点式:.已知图象的顶点或对称轴,通常选择顶点式.
③交点式:.已知图象与轴的交点坐标、,通常选择交点式.
(4)求抛物线的顶点、对称轴的方法
①公式法:,∴顶点是,对称轴是直线.
②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.
③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
(5)抛物线中,的作用
①决定开口方向及开口大小,这与中的完全一样.
②和共同决定抛物线对称轴的位置
由于抛物线的对称轴是直线,故
如果时,对称轴为轴;
如果(即、同号)时,对称轴在轴左侧;
如果(即、异号)时,对称轴在轴右侧.
③的大小决定抛物线与轴交点的位置
当时,,所以抛物线与轴有且只有一个交点(0,),故
如果,抛物线经过原点;
如果,与轴交于正半轴;
如果,与轴交于负半轴.
知识点三:二次函数与一元二次方程的关系
,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与轴交点的横坐标,因此二次函数图象与轴的交点情况决定一元二次方程根的情况.
(1)当二次函数的图象与轴有两个交点,这时,则方程有两个不相等实根;
(2)当二次函数的图象与轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与轴没有交点,这时,则方程没有实根.
通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:
的图象
的解
方程有两个不等实数解
方程有两个相等实数解
方程没有实数解
:关于直线与抛物线的交点知识
(1