1 / 13
文档名称:

关于高等数学极限方法总结归纳.docx

格式:docx   大小:344KB   页数:13页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

关于高等数学极限方法总结归纳.docx

上传人:Sandy01 2021/6/15 文件大小:344 KB

下载得到文件列表

关于高等数学极限方法总结归纳.docx

文档介绍

文档介绍:Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
关于高等数学极限方法总结归纳
摘要:数列极限的求法一直是数列中一个比较重要的问题, 本文通过归纳和总结, 从不同 的方面罗列了它的几种求法.
关键词:高等数学、数列极限、定义、洛比达法则、
英文题目Limit methods summarize
Abstract:
The method of sequence limit has been in the series a more important problems, this paper summed up from different aspects and a few of its listing is also given.
Key words:
Higher mathematics, sequence limit, definition, los than amounting to law,

高等数学第二章在整个高等数学的学****中都占有相当重要的地位 , 特别是极限,原因就是后续章节本质上都是极限。一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。树没有根,活不下去, 没有皮,只能枯萎,可见极限的重要性。
极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法 还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代 换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的 四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要 重点注意运用。泰勒公式、 洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。
二. 研究问题及成果
极限定义、运算法则和一些结果
1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;;;等等
(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则
定理1 已知 ,都存在,极限值分别为A,B,则下面极限都存在,且有 (1)
(2)
(3)
说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限
(1)
(2) ;
说明:( 1 )不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式.
(2)一定注意两个重要极限成立的条件。 一定注意两个重要极限
成立的条件。
例如:,,;等等。
4.洛比达法则
定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当时,下列函数都是无穷小(即极限是0),且相互等价,即有:
~~~~~~ 。
说明:当上面每个函数中的自变量x换成时(),仍有上面的等价
关系成立,例如:当时, ~ ; ~ 。
定理4 如果函数都是时的无穷小,且~,~,则当存在时,也存在且等于,即=。
5.洛比达法则
定理5 假设当自变量x趋近于某一定值(或无穷大)时,函数和满足:(1)和的极限都是0或都是无穷大;
(2)和都可导,且的导数不为0;
(3)存在(或是无穷大);
则极限也一定存在,且等于,即= 。
说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件(1)是否满足,即验证所求极限是否为“”型或“”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。
6.连续性
定理6 一切连续函数在其定义去间内的点处都连续,即如果是函数的定义去间内的一点,则有 。
7.极限存在准则
定理7(准则1) 单调有界数列必有极限。
定理8(准则2) 已知为三个数列,且满足:
(1)
(2) ,
则极限一定存在,且极限值也是a ,即。
二、求极限方法举例
利用函数的连续性(定理6)求极限
例4
解:因为是函数的一个连续点,
所以 原式= 。
利用两个重要极限求极限
例5
解:原式= 。
注:本题也可以用洛比达法则。
例6