1 / 107
文档名称:

数学分析原理Rudin完整答案.pdf

格式:pdf   页数:107页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

数学分析原理Rudin完整答案.pdf

上传人:yzhqw888 2016/6/16 文件大小:0 KB

下载得到文件列表

数学分析原理Rudin完整答案.pdf

文档介绍

文档介绍:MATH 413 [513] (PHILLIPS) SOLUTIONS TO HOMEWORK 1 Generally, a “solution” is something that would be acceptable if turned in in the form presented here, although the solutions given are often close to minimal in this respect. A “solution (sketch)” is too sketchy to be considered plete solution if turned in; varying amounts of detail would need to be ?lled in. Problem : If r ∈ Q \{ 0 } and x ∈ R \ Q, prove that r +x, rx 6∈ Q . Solution: We prove this by contradiction. Let r ∈ Q \{ 0 }, and suppose that r + x ∈ Q. Then, using the ?eld properties of both R and Q,wehave x =( r + x ) ? r ∈ Q . Thus x 6∈ Q implies r + x 6∈ Q . Similarly, if rx ∈ Q, then x =( rx ) /r ∈ Q. (Here, in addition to the ?eld properties of R and Q,weuse r 6= 0.) Thus x 6∈ Q implies rx 6∈ Q . Problem : Prove that there is no x ∈ Q such that x 2= 12. Solution: We prove this by contradiction. Suppose there is x ∈ Q such that x 2= 12. Write x = m n in lowest terms. Then x 2= 12 implies that m 2=12 n 2 . Since 3 divides 12 n 2, it follows that 3 divides m 2. Since 3 is prime (and by unique factorization in Z), it follows that 3 divides m. Therefore 3 2 divides m 2=12 n 2 . Since 3 2does not divide 12, using again unique factorization in Zand the fact that 3 is prime, it follows that 3 divides n. We have proved that 3 divides both m and n, contradicting the assumption that the fraction m nis in lowest terms. Alternate solution (Sketch): If x ∈ Q satis?es x 2= 12, then x 2is in Q and satis?es ? x 2 ¢ 2= 3. Now prove that there is no y ∈ Q such that y 2= 3 by repeating the proof that √ 2 6∈ Q . Problem : Let A ? R be nonempty and bounded below. Set ? A = {? a : a ∈ A }. Prove that inf( A )= ? sup( ? A ). Solution: First note that ? Ais nonempty and bounded above. Indeed, Acontains some element x, and then ? x ∈ A; moreover, A has a lower bound m,and ? m is an upper bound for ? A . We now know that b= sup( ? A) exists. We show that ? b= inf( A). That ? b is a lower bound for A is

最近更新

建筑材料供货合同范本(28篇) 106页

2025版航空航天设备安装工程合作协议范本 16页

2025版虫害杀虫及生态修复一体化合同范本 16页

2025版财务咨询与财务信息安全管理合同示范文.. 15页

2025版跨区域离婚协议执行保障及财产分割服务.. 16页

2025版车库租赁与车位共享服务合作协议 16页

2025版车辆抵押合同纠纷处理范本 15页

新老师自我介绍600字(8篇范文) 11页

2025版金融产品包销合同示范文本 15页

有关流泪小学作文9篇 13页

村重阳节讲话稿优质5篇 9页

2025版高端住宅玻璃幕墙安装施工质量控制合同.. 15页

夯基提能练30 群落的结构与演替-高考生物一轮.. 7页

2025版高性能游轮购置合同范本全新上线 16页

2025版高端窗帘产品承包销售合作协议 17页

2025电梯安全拆除协议 13页

2025蔬菜供货协议书范本 14页

2025,英文名流英文汽车租赁专项合同 16页

二人合作协议书(2025版) 16页

二零二五年中式餐厅租赁管理服务协议 15页

二零二五年{汽车零部件}国际贸易合同标的供应.. 14页

二零二五年企事业单位班车租赁及拓展服务协议.. 16页

二零二五年商场品牌商品陈列设计与实施合同 17页

二零二五年度SAP项目实施与IT支持服务合同 18页

二零二五年办公楼室内保洁服务外包协议 14页

小学防性侵安全教育公开课一等奖课件赛课获奖.. 27页

2025年北师大版二年级下册数学第五单元同步检.. 6页

2025北京朝阳区初三一模英语试卷及答案 11页

碎石桩作业安全技术交底 3页

歌曲《关雎》的创作手法与演唱特点分析 9页