文档介绍:2020年安徽省中考数学试卷(含答案)
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.
1.(4分)下列各数中,比小的数是
A. B. C.0 D.2
【解答】解:根据两个负数,绝对值大的反而小可知.故选:.
2.(4分)计算的结果是
A. B. C. D.
【解答】解:原式.故选:.
3.(4分)下面四个几何体中,主视图为三角形的是
A.B.C. D.
【解答】解:、主视图是圆,故不符合题意;
、主视图是三角形,故符合题意;
、主视图是矩形,故不符合题意;
、主视图是正方形,故不符合题意;故选:.
4.(4分)安徽省计划到2022年建成亩高标准农田,其中用科学记数法表示为
A. B. C. D.
【解答】解:用科学记数法表示为:.故选:.
5.(4分)下列方程中,有两个相等实数根的是
A. B. C. D.
【解答】解:、△,有两个相等实数根;
、△,没有实数根;
、△,有两个不相等实数根;
、△,有两个不相等实数根.
故选:.
6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是
A.众数是11 B.平均数是12 C.方差是 D.中位数是13
【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是选项不符合题意;
将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是符合题意;
,即平均数是12,于是选项不符合题意;
,因此方差为,于是选项不符合题意;故选:.
7.(4分)已知一次函数的图象经过点,且随的增大而减小,则点的坐标可以是
A. B. C. D.
【解答】解:、当点的坐标为时,,解得:,
随的增大而增大,选项不符合题意;
、当点的坐标为时,,解得:,
随的增大而减小,选项符合题意;
、当点的坐标为时,,解得:,选项不符合题意;
、当点的坐标为时,,解得:,
随的增大而增大,选项不符合题意.故选:.
8.(4分)如图,中,,点在上,.若,,则的长度为
A. B. C. D.4
【解答】解:,,,
,,
.,,故选:.
9.(4分)已知点,,在上,则下列命题为真命题的是
A.若半径平分弦,则四边形是平行四边形
B.若四边形是平行四边形,则
C.若,则弦平分半径
D.若弦平分半径,则半径平分弦
【解答】解:、如图,
若半径平分弦,则四边形不一定是平行四边形;原命题是假命题;
、若四边形是平行四边形,
则,,
,,,
,是真命题;
、如图,
若,则弦不平分半径,原命题是假命题;
、如图,
若弦平分半径,则半径不一定平分弦,原命题是假命题;故选:.
10.(4分)如图,和都是边长为2的等边三角形,它们的边,在同一条直线上,点,重合.现将在直线向右移动,直至点与重合时停止移动.在此过程中,设点移动的距离为,两个三角形重叠部分的面积为,则随变化的函数图象大致为
A. B.
C. D.
【解答】解:如图1所示:当时,过点作于.
和均为等边三角形,为等边三角形.
,.
当时,,且抛物线的开口向上.
如图2所示:时,过点作于.
,函数图象为抛物线的一部分,且抛物线开口向上.故选:.
二、填空题(本大题共4小题,每小题5分,满分20分)
11.(5分)计算: 2 .
【解答】解:原式故答案为:2.
12.(5分)分解因式: .
【解答】解:原式,故答案为:
13.(5分)如图,一次函数的图象与轴和轴分别交于点和点.与反比例函数的图象在第一象限内交于点,轴,轴.垂足分别为点,.当矩形与的面积相等时,的值为 2 .
【解答】解:一次函数的图象与轴和轴分别交于点和点,令,则,令,则,故点、的坐标分别为、,
则的面积,而矩形的面积为,
则,解得:(舍去)或2,故答案为2.
14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片沿过点的直线折叠,使得点落在上的点处.折痕为;再将,分别沿,折叠,此时点,落在上的同一点处.请完成下列探究:
(1)的大小为 30 ;(2)当四边形是平行四边形时,的值为 .
【解答】解:(1)由折叠的性质可得:,,,,,,
,,,,
,,,,
,,故答案为:30;
(2)由折叠的性质可得:,,
四边形是平行四边形,,,
又,,
,,,,,,
三、(本大题共2小题,每