文档介绍:§
D
3、提问:试说出诱导公式的结构特征
4、板书诱导公式(一)及结构特征:
诱导公式(一)
sin(k·2π+)=sin cos(k·2π+)=cos
tg(k·2π+)=tg
(k∈Z)
结构特征:①终边相同的角的同一三角函数值相等
②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值问题。
5、问题:试求下列三角函数的值
(1)sin1110° (2)sin1290°
学生:(1)sin1110°=sin(3×2π°+30°)=sin30°=
(2)sin1290°=sin(3×2π°+210°)=sin210°
(至此,大多数学生无法再运算,从已有知识导出新问题)
6、引导学生观察演示(一),并思考下列问题一:
х
300
2100
演示(一)
(1)210°能否用(180°+)的形式表达?
(0°<<90°=(210°=180°+30°)
(2)210°角的终边与30°的终边关系如何?(互为反向延长线或关于原点对称)
(3)设210°、30°角的终边分别交单位圆于点p、p',则点p与p'的位置关系如何?(关于原点对称)
(4)设点p(x,y),则点p’怎样表示? [p'(-x,-y)]
(5)sin210°与sin30°的值关系如何?
7、师生共同分析:
在求sin210°的过程中,我们把210°表示成(180°+30°)后,利用210°与30°角的终边及其与单位圆交点p与p′关于原点对称,借助三角函数定义,把180°~270°角的三角函数值转化为求0°~90°角的三角函数值。
8、导入课题:对于任意角,sin与sin(180+)的关系如何呢?试说出你的猜想。
(二)运用迁移规律,引导学生联想类比、归纳、推导公式
(I)1、引导学生观察演示(二),并思考下列问题二:
χ
1800
300
χ
χ
χ
1800
1800
1800
设为任意角 演示(二)
(1)角与(180°+)的终边关系如何?(互为反向延长线或关于原点对称)
(2)设与(180°+)的终边分别交单位圆于p,p′,则点p与
p′具有什么关系? (关于原点对称)
(3)设点p(x,y),那么点p′坐标怎样表示? [p′(-x,-y)]
(4)sin与sin(180°+)、cos与cos(180°+)关系如何?
(5)tg与tg(180°+)
(6)经过探索,你能把上述结论归纳成公式吗?其公式特征如何?
2、教师针对学生思考中存在的问题,适时点拨、引导,师生共同归纳推导公式。
(1)板书诱导公式(二)
sin(180°+)=-sin cos(180°+)=-cos
tg(180°+)=tg
(2)结构特征:①函数名不变,符号看象限(把看作锐角时)
②把求(180°+)的三角函数值转化为求的三角函数值。
3、基础训练题组一:求下列各三角函数值(可查表)
①cos225° ②tg-π ③sinπ
4、用相同的方法归纳出公式:
sin(π-)=sin
cos(π-)=-cos
tg(π-)=-tg
5、引导学生观察演示(三),并思考下列问题三:
300
300
演示(三)
(1)30°与(-30°)角的终边关系如何? (关于x轴对称)
(2)设30°与(-30°)的终边分别交单位圆于点p、p′,则点p与
p′的关系如何?
(3)设点p(x,y),则点p′的坐标怎样表示? [p′(x,-y)]
(4)sin(-30°)与sin30°的值关系如何?
6、师生共同分析:在求sin(-30°)值的过程中,我们利用(-30°)与30°角的终边及其与单位圆交点p与p′关于原点对称的关系,借助三角函数定义求sin(-30°)的值。
(Ⅱ)导入新问题:对于任意角 sin与sin(-)的关系如何呢?试说出你的猜想?
1、引导学生观察演示(四),并思考下列问题四:
O
χ
χ
χ
χ
设为任意角 演示(四)
(1)与(-)角的终边位置关系如何? (关于x轴对称)
(2)设与(-)角的终边分别交单位圆于点p、p′,则点p与p′位置关系如何?(关于x轴对称)
(3)设点p(x,y),那么点p′的坐标怎样表示? [p
′(x,-y)]
(4)sin与sin(-