1 / 10
文档名称:

五年级牛吃草问题解析.doc

格式:doc   大小:47KB   页数:10页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

五年级牛吃草问题解析.doc

上传人:慢慢老师 2021/9/11 文件大小:47 KB

下载得到文件列表

五年级牛吃草问题解析.doc

文档介绍

文档介绍:牛吃草问题
牛吃草问题是经典的奥数题型之一,首先,先介绍一下这类问题的背景
一、定义
伟大的科学家牛顿著的《普通算术》一书中有这样一道题:“12头牛4周吃牧草 格尔,同样的牧草,21头牛9周吃10格尔。问24格尔牧草多少牛吃18周吃完。”(格尔——牧场面积单位),以后人们称这类问题为“牛顿问题”的牛吃草问题。
二、特点
在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。来看看这例题
:牧场上有一片匀速生长的草地,可供27头牛吃6周,?
解答这类问题,困难在于草的总量在变,它每天、每周都在均匀地生长,时间愈长,:①某个时间期限前草场上原有的草量;②这个时间期限后草场每天(周),必须设法找出这两个量来。
下面就用开头的题目为例进行分析.(见下图)
从上面的线段图可以看出23头牛9周的总草量比27头牛6周的总草量多,,×6=162头牛一周吃草量(或一头牛吃162周).23头牛9周吃草量相当于23×9=207头牛一周吃草量(或一头牛吃207周).这样一来可以认为每周新生长的草量相当于(207-162)÷(9-6)=15头牛一周的吃草量。
需要解决的第二个问题是牧场上原有草量是多少?用27头牛6周的总吃草量减去6周新生长的草量(即15×6=90头牛吃一周的草量)即为牧场原有草量。
所以牧场上原有草量为27×6-15×6=72头牛一周的吃草量(或者为23×9-15×9=72)。 牧场上的草21头牛几周才能吃完呢?,且始终可保持平衡(前面已分析过每周新生的草恰够15头牛吃一周).故分出15头牛吃新生长的草,另一部分21-15=6(头)÷6=12(周),。
三、例题讲解
例1 牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?
分析与解:这类题难就难在牧场上草的数量每天都在发生变化。总草量可以分为牧场上原有的草和新生长出来的草两部分。牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天),
说明牧场10天长草50份,1天长草5份。也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。由此得出,牧场上原有草
(l0—5)× 20=1