1 / 8
文档名称:

构造组合模型巧证组合恒等式.doc

格式:doc   大小:29KB   页数:8页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

构造组合模型巧证组合恒等式.doc

上传人:lu2yuwb 2021/9/18 文件大小:29 KB

下载得到文件列表

构造组合模型巧证组合恒等式.doc

文档介绍

文档介绍:构造组合模型巧证组合恒等式
第 3 页
构造组合模型巧证组合恒等式
  构造组合模型巧证组合恒等式 证明组合恒等式,一般是利用组合数的性质、数学归纳法、二项式定理等,通过一些适当的计算或化简来完成.但是,很多组合恒等式,也可直接利用组合数的意义来证明.即构造一个组合问题的模型,把等式两边看成同一组问题的两种计算方法,由解的唯一性,即可证明组合恒等式.
例1证明Cnm=Cnm-1+Cn-1m-1.
分析:原式左端为m个元素中取n个的组合数.原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法.一类为必取a1有Cn-1m-1种取法.由加法原理可知原式成立.
例2证明Cnm·Cpn=Cpm·Cn-pm-p.
分析:原式左端可看成一个班有m个人,从中选出n个人清扫卫生,在选出的n个人中,p人清扫教室,余下的n-p人清扫环境卫生的选法数.原式右端可看成直接在m人中选出p人清扫教室,在余下的m-p人中再选出n-p人清扫环境卫生.显然,两种算法计算的是同一个问题,结果当然是一致的.
以上两例虽然简单,但它揭示了用组合数的意义证明组合恒等式的一般思路:先由恒等式中意义比拟明显的一边构造一个组合问题的模型,再根据加法原理或乘法原理对另一边进行分析.假设是几个数〔组合数〕相加的形式,可以把构造的组合问题进行适当分类,如例1,假设是几个数〔组合数〕相乘的形式,那么应进行适当的分步计算,如例2,当然,很多情况下是两者结合使用的.
第 3 页
例3证明Ckm+n=C0mCkn+C1mCk-1n+C2mCk-2n+…+CkmC0n,其中当p>q时Cpq=0.
证明:原式左边为m+n个元素中选k个元素的组合数.今将这m+n个元素分成两组,第一组为m个元素,剩下的n个元素为第二组,把取出的k个元素,按在第一组取出的元素个数i〔i=0,1,2,…,k〕进行分类,这一类的取法数为CimCk-in.于是,在m+n个元素中取k个元素的取法数又可写成?ki=0CimCk-in.故原式成立.
例4证明
Cnn+Cnn+1+Cnn+2+…+Cnn+m=Cn+1n+m+1.
证明:原式右边为m+n+1个元素中取n+1个,元素的组合数,不失一般性,可以认为是在1,2,3,…,m+n,m+n+1,共m+n+1个数中取n+1个数.将取出的n+1个数a1,a2…,an+1由小到大排列,即设a1<a2<an+1,按取出的最大数an+1=k+1分类,显然k=n,n+1,…,n+m.当k=n+i时〔i=0,1,2,…,m〕,这一类取法数为Cnn+i,所以取法总数又等于?mi=0Cnn+i.原式成立.
第 4 页
对于某些组合恒等式,有时其左右两边所表示的意义都不易看出,但是如果根据组合数的特点仔细分析,或对原式进行一些适当的变形,往往可以巧妙地构造一个组合问题做为模型,证明就可化难为易.
例5证明C1n+2C2n+3C3n+…+nCnn=n2n-1.
分析:注意,原式左端等价于C11C1n+C12C2n+…+C1nCnn,这里C1iCin可表示先在n个元素里选i个,再在这i个元素里选一个的组合数,可设一个班有n个同学,选出假设干人〔至少1人〕组成一个代表团,并指定一人为团长.把这种选法按取到的人