1 / 22
文档名称:

氢能源产业研究-氢能制备、储运与应用分析.docx

格式:docx   大小:1,316KB   页数:22页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

氢能源产业研究-氢能制备、储运与应用分析.docx

上传人:科技星球 2021/11/7 文件大小:1.29 MB

下载得到文件列表

氢能源产业研究-氢能制备、储运与应用分析.docx

文档介绍

文档介绍:氢能源产业研究
氢能制备、储运与应用分析
 
 
一、碳中和下的能源转型背景
%碳排放来自能源领域,发展绿色能源供应体系刻不容缓
当前我国仍保持以煤炭为主,石油、天然气和非化石能源为辅的能源供应体系,应对气候 变化、减少碳排放已成为国际社会的共同课题。根据联合国环境规划署《2019 年排放差距 报告》,中国是全球最大的二氧化碳排放大国,2018 年排放量占到全球的四分之一以上, 2060 年“碳中和”的目标下达正是我国自主给出国际社会的承诺,也为我国融入国际社会 实现双循环提供支持。根据中金宏观组碳排放量统计,我国当前的二氧化碳排放量中,能 源占比 90%。能源排放中,基于 CEADs 数据库 2017 年数据,68%来自煤炭,13%来自天然 气,12%来自石油,其余 7%来自能源逃逸排放。因此,能源行业加快“低碳、零碳”步伐 是我国能否完成碳中和目标的关键,任重道远、大有可为。
,完成目标须顶层设计和更大力度的政策支持
作为全球碳排第二大来源,我国减排任务重、困难多。从资源禀赋条件来看,我国“富煤、 缺油、少气”,因此煤炭占我国一次能源消费比重始终保持在 60~70%。而碳中和目标的目 标意味着我们需要打破过去几十年****惯的能源供应模式,但同时不能对实体经济运行带来 较大影响。因此,我们认为,国家战略顶层设计和更大力度的政策支持将是至关重要的。
“碳中和”意味着我国能源体系必须向更清洁+更安全的转型,且是更经济的能源结构。综 上来看,我们认为,能源需求的增长和碳排放下降的约束将使得我国完成碳中和目标更具 挑战,我们认为,需要强有力的政策支持和指引,但同时也将加速中国的能源转型、使得 我国经济最终受益。碳中和目标是在美丽中国下实现能源革命战略目标思想的更进一步, 将使得中国在 2060 年获得不仅是更清洁,也会是更经济和更安全的能源结构。
更清洁:以非化石能源为主的电能将成为一次能源主体,非电领域则由氢能和碳捕捉 帮助完成净零排放。
更安全:中国新能源产业在全球市场具备领先地位,有较强的竞争力。能源转型也将 有利于中国在能源供给上摆脱对海外的依赖,提升国家的能源安全。
更经济:相比传统化石能源,可再生能源的资源规模是前者的 800 倍,因此制造业属 性远大于资源属性,即使在平价之后中国制造业也能更好的发挥优势,在光伏,风电, 锂电池和氢能等产业产生规模效应和技术迭代后实现能源成本的进一步下降,带来更 经济的成本。
为实现能源碳中和,我们认为中国在能源供给端或需要推动以非化石能源为主的电能将成 为一次能源主体,加快提升电气化率,在非电能源领域将会加速推动氢能、碳捕捉等新技 术应用。根据各行业组对于未来用能形式的推演,我们汇总预计到 2060 年 70%的能源将由 清洁电力供应,约 8%将由绿氢支撑,剩余约 22%的能源消费将通过碳捕捉方式,实现碳中 和。而实现这一变化,需要能源供给端和需求端的共同努力。其中供给端将主要依靠电力
的清洁化以及非电的清洁化,需求侧则需要推动电力、氢能等新用能形式的落地。
碳中和技术路径:形成以光伏+储能为主的电能供应,以及氢和碳捕捉共存的非电供应技术 格局。首先通过多管齐下的节能减排技术来完成 2030 年前碳达峰目标的实现,然后通过以 光伏为主的多能互补模式完成电能的零排放,并在非电领域如公路铁路交通,建筑和部分 工业领域通过电能的清洁和成本优势推动电气化率提升,随后在无法电气化领域,以氢能 和生物质燃料实现重载交通、部分航空航运、部分化工行业的零碳排放,最后以碳捕捉实 现余下大部分工业领域的零碳排放。
电力零碳排放先行,多能互补降低发电成本。我们测算光伏+储能在十四五、十五五期间将 陆续实现在分布式较零售电价、和在集中式较燃煤标杆上网电价的彻底平价。但是从区域 来说,水电和风电在部分区域比光伏成本更有优势,其次在时间维度上光伏发电只在白天, 也会降低电网和储能设备整体利用小时。因此单一能源结构显然并不是最经济的选择。此 外,风光水的发电能力“靠天吃饭”,存在季节性分布不均和气候带来的不确定性,为保证 电力基本需求的满足,需要可控机组的接入,核电也是必不可少电源支持。最后,考虑到 风,水,核都有资源总量限制,难以独挡一面,因此在电源技术选择中以光伏+储能为主体。 但是多元互补的智能电网技术同样重要、保障电力系统的安全稳定运行以及整体成本更低, 政策上应加大对电网储能技术的应用支持,加速非化石能源的比例提升。
非电领域的碳中和技术选择取决于各能源使用场景。在非电领域,主要利用化石能源的热 能或通过热能转化为机械能,目前零排放技术存在四种方式,即电气化、氢能,生物质燃 料和碳捕捉。不同于电能,非电领域各个能