1 / 23
文档名称:

随机过程马氏过程.ppt

格式:ppt   大小:1,618KB   页数:23页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

随机过程马氏过程.ppt

上传人:文库新人 2021/11/23 文件大小:1.58 MB

下载得到文件列表

随机过程马氏过程.ppt

相关文档

文档介绍

文档介绍:随机过程马氏过程
第一页,课件共23页
*
我们注意到,齐次马氏链的n步转移概率当n趋于无穷时,即过程的转移无限进行下去时,其极限可能存在,而且也可能与起始状态i无关,例如只有两个状态的马氏链,其一步转移概率矩阵为
易知其任意步转移概率矩阵为
第二页,课件共23页
*
又如一齐次马氏链,状态空间为E={1,2,3},其一步转移概率矩阵,二步,三步转移概率矩阵为
第三页,课件共23页
*
于是由此可推测
第四页,课件共23页
*
因此,一般来说,通常讨论关于齐次马氏链的n步转移概率的两方面问题,一是其极限是否存在?二是如果此极限存在,那么它是否与现在所处状态i无关,在马氏链理论中,有关这两方面问题的定理,统称为遍历性定理。
第五页,课件共23页
*
一 齐次马氏链的遍历性
设齐次马氏链的状态空间为E={1,2,…},若对于E中所有的状态 i,j,存在不依赖于i的常数πj,为其转移概率的极限,即
其相应的转移矩阵有
第六页,课件共23页
*
则称此齐次马氏链具有遍历性,并称πj为状态j的稳态概率。
第七页,课件共23页
*
设齐次马氏链{X(n),n≥1}的状态空间为E={1,2,…,N},若存在正整数m,使对任意的i,j∈E,其m步转移概率均大于0, 即
则此马氏链具有遍历性;且各状态的稳态概率满足下列方程组
第八页,课件共23页
*
及概率分布条件
注1 判断马氏链的遍历性有很多方法,本定理只是其中一个较为简单的方法.
注2 本定理不仅给出了判断马氏链的遍历性的方法,也给出了求其稳态概率的方法.
第九页,课件共23页
*
设齐次马氏链的状态空间E={1,2,3},其一步转移概率为
试问此链是否具有遍历性?若有,试求其稳态概率.
第十页,课件共23页