文档介绍:2011 高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料) ,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):A 我们的参赛报名号为(如果赛区设置报名号的话):3980 所属学校(请填写完整的全名):广东金融学院参赛队员(打印并签名): (打印并签名):周雪刚日期: 2011 年9月12日赛区评阅编号(由赛区组委会评阅前进行编号): 2011 高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评阅人评分备注全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号): 1 城市表层土壤重金属污染分析摘要本文基于对某城区表面土壤重金属污染的分析,运用克里金插值法绘出 8 种主要重金属元素在该城区的空间分布图,建立了地累积指数法和污染负荷指数的数学模型,分析出重金属污染的程度及其产生的原因。随后,建立重金属污染的扩散模型,确定了污染源的位置,对模型进行拓展,得到一个更合乎实际的重金属污染扩散模型。针对问题一,我们运用克里金插值方法,绘制出 8种主要重金属元素在该城区的空间分布图(如图 1-8 )。为了分析不同区域各种重金属的污染程度,我们首先建立地累积指数法的数学模型,利用此模型分别计算出各区域 8 种元素的 Muller 污染指数(见表 2)。其次,为了分析各个区域总体的重金属污染程度, 我们建立了污染负荷指数的数学模型。运用 MATLAB 软件求出各个区域总体的污染负荷指数(见表 3), 得到重金属污染的程度结果如下:生活区中等污染、山区警戒值、主干道路区中等污染、公园绿地区轻度污染、工业区强污染。它们的污染负荷程度指数排名为: 山区公园绿地区生活区主干道路区工业区 PL PL PL PL PLIIIII????。针对问题二,首先利用 Muller 污染指数对该城区中各区域重金属污染的主要原因作初步的定性分析得到表 5的结论。然后利用因子分析法对该整个城区的重金属浓度进行分析。最后分析出该城区重金属污染的主要原因为: 工业区的废水废气污染,生活区的灌溉施肥,主要干道区的汽车尾气排放。针对问题三,我们先对重金属污染物的传播特征进行分析,假设重金属污染物主要通过扩散的方式进行迁移,先不考虑海拔的影响,建立了重金属污染物的二维扩散模型: ))()(2 (),( 0 20 20 220v yyxxD yx erfc CyxC??????然后进行数据拟合,求出模型的参变量,确定各种重金属污染源的位置为: As (,) 、 Cd(,) 、 Cr(,) 、 Cu(,2329) 、 Hg(,) 、 Ni (,) 、 Pb (,) 、 Zn (,) 。针对问题四,我们在模型三的基础之上,结合各个方向的扩散系数及风向作进一步的考虑,得到一个相对更合理的重金属污染物扩散模型。关键词: 地累积指数模型污染负荷指数模型因子分析污染物扩散模型 2 一、问题重述 背景随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。按照功能划分,城区一般可以分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为 1类区、2类区、……、5类区,不同的区域环境受到人类活动影响的程度不同。现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距 1公里左右的网格子区域,按照每平方公里 1个采样点对表层土(0~10 厘米深度) 进行取样、编号,并用 GPS 记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照 2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。 本文