文档介绍:[转载]闲谈CFD<5>——
原文地址:闲谈CFD<5>——:流沙
有两种方法处理近壁面区域。
一种方法,不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wallfunc[转载]闲谈CFD<5>——
原文地址:闲谈CFD<5>——:流沙
有两种方法处理近壁面区域。
一种方法,不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wallfunction”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。采用壁面函数法,省去了为壁面的存在而修改湍流模型。
另一种方法,修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性子层。此处使用的方法即近壁模型。(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W湍流模型是一种典型的近壁湍流模型)。
所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致使数值结果恶化。当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界错误。然而这是若干年前的工业标准,如今ANSYSFLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。这些y+无关的格式是默认的基于w方程的湍流模型。对于基于epsilon方程的模型,增强壁面函数(EWT)提供了相同的功能。这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。(实际上是这样的:K-W方程是低雷诺数模型,采用网格求解的方式计算近壁面粘性区域,所以加密网格降低y+值不会导致结果恶化。k-e方程是高雷诺数模型,其要求第一层网格位于湍流充分发展区域,而此时若加密网格导致第一层网格处于粘性子层内,则会造成计算结果恶化。这时候可以使用增强壁面函数以避免这类问题。SA模型默认使用增强壁面函数)。
只有当所有的边界层求解都达到要求了才可能获得高质量的壁面边界层数值计算结果。这一要求比单纯的几个Y+值达到要求更重要。覆盖边界层的最小网格数量在10层左右,最好能达到20层。还有一点需要注意的是,提高边界层求解
常常可以取得稳健的数值计算结果,因为只需要细化壁面法向方向网格。与增加精度向伴随的是计算开销的增加。对于非结构网格,建议划分10~20层棱柱层网格以提高壁面边界层的预测精度。棱柱层厚度应当被设计为保证有15层或更多网格节点。这可以在获得计算结果后,通过查看边界层中心的最大湍流粘度,该值提供了边界层的厚度(最大值的两倍位置即边界层的边)。棱柱层大于边界层厚度是必要的,否则棱柱层会限制边界层的增长。
一些建议:
(1)对于epsilon方程,使用enhanced壁面函数。
(2)若壁面函数有助于epsilon方程,则可以使用scalable壁面函数。
(3)对于基于w方程的模型,使用默认的增强壁面函数。
(4)SA模型,使用增强壁面处理。
以上内容翻译自Fluent理论文档P121。
1、标准壁面函数
ANSYSFLUENT中的标准壁面函数是基于launder与Spalding的工作,在工业上有广泛的应用。
在标准壁面函数中,用得比较多的变量为y*,y*的下限为15,低于此值,将会导致结果精度恶化。
标准壁面函数用于以下模型:k-eps