文档介绍:
第 2 页 共 (1)增函数
设函数y=f(x)的定义域为I,假如对于定义域I内的某个区间D内的随意两个自变量x1,x2,当x1
假如对于区间D上的随意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)=f(x)的单调减区间.
留意:函数的单调性是函数的局部性质;
(2)图象的特点
假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A)定义法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)变形(通常是因式分解和配方);
(4)定号(即推断差f(x1)-f(x2)的正负);
(5)下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性亲密相关,其规律:“同增异减”
留意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.
函数的奇偶性(整体性质)
(1)偶函数:一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2)奇函数:一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
:
1首先确定函数的定义域,并推断其是否关于原点对称;
2确定f(-x)与f(x)的关系;
3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.
留意:,,
(1)再依据定义判定;
第 6