文档介绍:第四章约束优化设计?概述?约束坐标轮换法?随机方向法?罚函数法概述结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: 根据求解方式的不同,可分为直接解法和间接解法两类。直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于这类方法的有: 随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由m 个不等式约束条件gu (x)≤0 所确定的可行域φ内,选择一个初始点 0X 然后确定一个可行搜索方向 S ,且以适当的步长沿 S 方向进行搜索,取得一个目标函数有所改善的可行的新点 1X 即完成了一次迭代。以新点为起始点重复上述搜索过程,每次均按如下的基本迭代格式进行计算: k+1 k k k = + S ? (k=0,1,2,..) X X ?逐步趋向最优解, 直到满足终止准则才停止迭代。直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行, 因此, 迭代计算不论何时终止, 都可以获得比初始点好的设计点。 2) 若目标函数为凸函数, 可行域为凸集, 则可获得全域最优解, 否则, 可能存在多个局部最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集 1, 2,..., 1, 2,..., u m v p n ?? ? min ( ) f x n x R ?. . s t ( ) 0 ( ) 0 uv g x h x ??间接解法间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法, 并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后, 和目标函数结合起来, 构成一个新的目标函数, 即将原约束优化问题转化为一个或一系列的无约束优化问题。然后对新目标函数进行无约束极小化计算。间接法是结构优化设计中广泛使用的有效方法,其特点: 1) 由于无约束优化方法的研究日趋成熟, 为间接法提供可靠基础。这类算法的计算效率和数值计算的稳定性大有提高; 2) 可以有效处理具有等式约束的约束优化问题; 3) 目前存在的主要问题, 选取加权因子较为困难, 选取不当, 不仅影响收敛速度和计算精度,甚至导致计算失败。 a) 可行域是凸集; b) 可行域是非凸集???????? 1 2 1 2 1 1 , , m l j k j k X F X G g X H h X ? ?? ??? ?? ?? ? ?? ?? ?? ?? ?新目标函数加权因子?约束坐标轮换法约束坐标轮换法是在无约束坐标轮换法的基础上, 再加上由约束条件构成的可行性逻辑判断而构成的方法, 这样可以使搜索点保持在可行域内, 求得最优解。迭代步长不是采用最优步长,而是加速步长。其基本思路: 在可行域任取一点 0X ,取一个初始步长 0?, 按 1 0 1 1 X X e ?? ?, 取得沿 1x 坐标轴第一个迭代点,检查该点是否满足可行性和适用性:11 X D ?( 可行性条件) 1 0 1 ( ) ( ) F X F X ?(适用性条件) 若两者均满足,步长加倍,迭代计算 1 0 2 1 2 X X e ?? ?,只要迭代点满足条件,加倍增大步长, 继续迭代获得新点; 当迭代点不满足条件,取前一个迭代点,转而沿 2x 坐标轴方法搜索,不满足条件时,取负步长进行, 如图所示,直到逼近最优点 X ?。约束坐标轮换法虽然方法简单、算法明确,便于设计,但当维数较高时收敛速度慢,还会出现“死点”,导致出现伪最优点。?约束随机方法随机方向法的基本思路: 在可行域内选择一个初始点,利用随机数的概率特性,产生若干个随机方向,并从中选择一个能使目标函数值下降最快的随机方向作为搜索方向 S。从初始点 0X 出发,沿S 方向以一定步长进行搜索, 得到新点 X , 新点 X 应满足约束条件且 0 ( ) ( ) f X f X ?,至此完成一次迭代。随机