文档介绍:大数据医疗的应用与分析
摘 要: 在医疗领域中,对海量数据进行数据挖掘,获取价值信息是大数据分析决策的重要手段,可以提升医疗服务水平。文章以大数据在临床医疗、生物制药等方面的应用为切入点,分析了大数据技术在医疗领域中的应用优需求情况, 所得信息反馈给医药研发部门, 使其对有限的资源进行更有效的配置与管理。通过日常医护人员对就诊病人的相关数据汇入到数据仓库中,该数据与历史记录汇集、分类,最后应用数据挖掘技术从数据仓库中获取有效信息,进行行为预测与判断,为生物制药提供有力依据,所以大数据在生物制药中能够全面地发挥出药物的生产与治理效果。通过追踪相关药物并分析判断与决策,帮助医护人员及时准确地了解病人身心健康的实际状况,并根据病人的实际状况及时调整治疗药物的用量问题。
与传统的生物制药相比,大数据医疗生物制药能够实时监测药物的效果,及时检测药物的使用情况。通过比对标准药物的成份及含量,检测所含成分是否出现制造假药等情况,为促进健康中国创造有利的基础条件。
在穿戴医疗产品方面的应用
大数据以及物联网的不断发展使市场出现大量智能产品,如智能穿戴测心率、监控血压等产品。可穿戴设备依据身体所发出持续性信息可及时发现身体异常症状。该医疗设备主要运用大数据技术对其收集到的数据进行科學地、正确地、及时地分析,并做出高效率和准确的反馈,根据反馈的信息,分析健康状况并做出调整。根据大数据智能产品测出血脂数据与正常数据进行比对,若发现异常,可及时发出警报信息进行反馈,从而依据价值信息做出合理的判断与调整。大数据还可以改善公共健康监控,公共卫生部门通过大量数据收集对公共卫生做出整合处理,快速检测流行性传染病的扩散速度、流感病毒细胞的繁殖速度,以便及时做好防范措施。 与传统的医疗设备相比,大数据医疗分析可根据数据库中已有的历史数据,如集合健康数据、生命体征的指标来形成个体化数据库及电子健康档案。最后,通过把对应数据库及电子健康档案信息植入电子设备中,然后可随时监控血压、心率等生命体征指标进行健康管理及疾病提示。建立健康管理档案,实现数据共享,具有比较强的关联能力。
2 大数据医疗与传统医疗的对比
传统医疗与大数据医疗存在较大差别,如诊断错误概率、信息处理速度、医疗资源配置、个人医疗信息管理等问题。
运作效率快、出错概率小
在传统医疗中,各种数据指标都需要人为操作、汲取和整合信息,人为处理数据的速度较慢且容易出错,更新速度慢,同时不宜做出科学的预测。而大数据医疗能够快速处理医疗数信息,并且出错概率小,可以对数据进行及时更新,信息处理速度快。同时,大数据可以根据数据的整合、总结,做出科学地行为预测与判断。
优秀医疗资源分配更加合理
由于传统医疗资源受各方面因素影响,如:医护人员受教育程度、所处地理位置、所在硬件环境等。医疗专家相对集中在大中城市,而乡镇等偏远地区则较为稀缺,医疗资源产生“两极分化”,时常出现看病难,大医院人满为患,小医院得不到良好的医疗资源,由此缺少优质的医疗资源。然而基于大数据的医疗资源分配则更加合理,病人可以通过互联网平台提前预约知名医疗专家为其提供服务,可以实现在线远程指导和医疗帮助,同时很多医疗基础设施可以实现远程共享。所以,医疗大数据资源共