文档介绍:1
高一数学下学期知识点归纳
数学这个科目始终是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分许多;下面是我给大家带来的高一下册数学学问点,盼望能关心到大家!
高一下册数学 规定:空集是任何集合的子集,空集是任何非空集合的真子集
高一下册数学学问点3
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有很多个公共点
②直线和平面相交——有且只有一个公共点
3
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
(找平面的法向量)
规定:
a、直线与平面垂直时,所成的角为直角,
b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:假如平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
直线和平面垂直的定义:假如一条直线a和一个平面内的任意一条直线都垂直,,平面叫做直线a的垂面。
直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。
③直线和平面平行——没有公共点
直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
5
直线和平面平行的判定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
高一下册数学学问点4
定义域
(高中函数定义)设A,B是两个非空的数集,假如按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
值域
名称定义
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量全部值的集合
常用的求值域的方法
(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等
关于函数值域误区
定义域、对应法则、值域是函数构造的三个基本“元件”。平常数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就