1 / 18
文档名称:

三角函数知识点汇总.docx

格式:docx   大小:162KB   页数:18页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

三角函数知识点汇总.docx

上传人:shijijielong001 2022/6/20 文件大小:162 KB

下载得到文件列表

三角函数知识点汇总.docx

相关文档

文档介绍

文档介绍:
1三角函数的概念
知识网络】
【考点梳理】考点一、角的概念与推广
1.任意角的概念:正角、负角、零角2.象限角与轴线角:
与a终边相同的角的集合:{卩I卩=2kK+a,keZ}

第一象限角的集合:{卩I2k兀=—tana.
sin(兀—a)=sina,cos(兀—a)=—cosa,tan(兀—a)=—tana.

-a)=cosa,sin(+a)=cosa,sin(3-a)=-cosa,
22
、/3兀、.
+a)=-(-^-a)=-sma.
•/3兀
sm(-^+a)=-cosa,
cos(丁+a)=sina.
cos(2-a)=sina.
要点诠释:
两类诱导公式的记忆,经常使用十字口决:“奇变偶不变,符号看象限”。
.、兀兀3兀
“奇变”是指所涉及的轴上角为一的奇数倍时(包括4组:〒±a,±a)函数名称变为原来函数
222的余函数;其主要功能在于改变函数名称.
血“偶不变”是指所涉及的轴上角为一的偶数倍时(包括5组:2k兀+a,-a,兀土a,2k-a),函数名
2称不变,其主要功能在于:求任意角的三角函数值,化简及某些证明问题.
诱导公式的引申:
sin(kk+a)=(-1)ksina,cos(kk+a)=(-1)kcosa,
tan(kK+a)=tana.(keZ)
【知识网络】
3正弦、余弦的图象和性质
【考点梳理】
考点一、“五点法”作图
k
在确定正弦函数y=sinx在[0,2k]上的图象形状时,最其关键作用的五个点是(0,0),(-,1),
3k
(k,0),(=,-1),(2k,0)
2
考点二、三角函数的图象和性质


y=sinx
y=cosx
y=tanx


义域
xeR
xeR
{x1x丰kK+中,keZ}


[—1,1]
[—1,1]
(-g,+s)

:h
tr\
;;
i
:1


1
厂7溯
1
:4
1/4
/:X
a
4
z

K
T7\
-1
■/
\!

偶性
奇函数
偶函数
奇函数
单调增区间:

TTTT
单调增区间:
[2k兀——,2k兀+—]
(kgZ)
单调增区间:
22
[2k兀一兀,2k兀](kgZ)
TT
TT
单调减区间:
(k兀-
—r,k兀+=)(

TT
单调减区间:(kgZ)
2
2
[2k兀+—,2k兀+——
]
kgZ)
22
[2k兀,2k兀+兀](kgZ)

kg
Z)

T二2兀
T二2兀
T=刃
期性


称中



对称中心:(k兀,0),k
gZ
/k兀八心:(二-,o2

TT
心:(k兀+—,0),kgZ
),kgZ

对称轴:x=kn+-
,kgZ
2
对称轴:x=k^,kgZ
对称轴:无
x=
2k兀+—,kgz
2
时,
x=
2k兀,kgz时,

y
max
=1;
y=1;
max

x=
”3兀
2k兀+—,kgz
2
时,
x=
2如+兀,kgz时,

y=—1
y
=—1
min
min
要点诠释:
三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域.
研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合

最近更新

泵车租赁合同 5页

违约方解除房屋买卖合同范本 3页

媒体传媒行业的职业道德与规范-职业道德与规范.. 26页

婚礼预算:策划与执行-精细化控制,实现梦想婚.. 23页

婚礼筹备的家庭服务指南-专业助力,打造完美婚.. 23页

2025年汽车专业实训心得体会(推荐篇) 39页

2025年汽修专业面试自我介绍3分钟(合集篇) 18页

混凝土考试题及答案——2024年整理 18页

2025年汪国真爱情诗(精选8篇) 53页

安徽租房热门合同样书(标准版) 6页

碳足迹计算与咨询服务协议(范本) 6页

2022-2023学年湖南省湘潭市湘潭县四年级上学期.. 13页

2020年部编版小学二年级语文下册《第四单元》.. 9页

一年级语文上册练习题综合 9页

2025年汉语拼音复韵母的发音(精选7篇) 11页

生产车间班长转正申请(四篇) 11页

2023年安徽建筑安全员C证(专职安全员)考试题库.. 30页

生产的文案(八篇) 13页

大学生的绿色生活-倡导环保,实现可持续发展 23页

大学生心理成长引导-提升心理素质,助力全面发.. 27页

2025年求职攻略:怎样打电话?(精选8篇) 7页

部编版八年级上语文课内古诗词整理 7页

入团考试知识大全 20页

雷雨剧本全文雷雨剧本雷雨 191页

2024年度水电站买卖协议范本版 9页

二级钢筋混凝土管配筋设计图册(共75页) 75页

《庄子当我们无路可走的时候》鲍鹏山 2页

XX公司篮球馆管理办法 4页

浙江建设职业技术学院顶岗实践报告 26页

渝人社发〔2017〕76号 关于对机关事业单位养老.. 3页