1 / 14
文档名称:

求轨迹方程的常用方法.doc

格式:doc   大小:794KB   页数:14页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

求轨迹方程的常用方法.doc

上传人:s1188831 2017/7/13 文件大小:794 KB

下载得到文件列表

求轨迹方程的常用方法.doc

相关文档

文档介绍

文档介绍:求轨迹方程的常用方法
知识梳理:
(一)求轨迹方程的一般方法:
1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:
1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。
。在此不一一缀述。
课前热身:
1. P是椭圆=1上的动点,过P作椭圆长轴的垂线,垂足为M,则PM中点的轨迹中点的轨迹方程为: ( )
A、 B、 C、 D、=1
【答案】:B
【解答】:令中点坐标为,则点P 的坐标为(代入椭圆方程得,选B
2. 圆心在抛物线上,并且与抛物线的准线及轴都相切的圆的方程是( )
A B
C D
【答案】:D
【解答】:令圆心坐标为(,则由题意可得,解得,则圆的方程为,选D
3: 一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:
A:抛物线B:圆 C:椭圆 D:双曲线一支
【答案】:D
【解答】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义。故选D。
4: 点P(x0,y0)在圆x2+y2=1上运动,则点M(2x0,y0)的轨迹是( )
B. 焦点在y轴上的椭圆
C. 焦点在y轴上的双曲线 D. 焦点在X轴上的双曲线
【答案】:A
【解答】:令M的坐标为则代入圆的方程中得,选A

一:用定义法求曲线轨迹
求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。
例1:已知的顶点A,B的坐标分别为(-4,0),(4,0),C 为动点,且满足求点C的轨迹。
【解析】由可知,即,满足椭圆的定义。令椭圆方程为,则,则轨迹方程为(,图形为椭圆(不含左,右顶点)。
【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。
圆:到定点的距离等于定长
椭圆:到两定点的距离之和为常数(大于两定点的距离)
双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)
到定点与定直线距离相等。
【变式1】: 1:已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。
解:设动圆的半径为R,由两圆外切的条件可得:,。

∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。
故所求轨迹方程为
2:一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:
A:抛物线B:圆 C:椭圆 D:双曲线一支
【解答】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义

最近更新

开学典礼小学生代表发言稿(通用12篇) 14页

建筑公司钢材购销合同(精选21篇) 55页

庆教师节发言稿(通用6篇) 7页

庆三八妇女节作文10篇 8页

幼小衔接专题教研方案(通用11篇) 29页

幼儿小班庆六一主持词(通用9篇) 23页

2025年小学数学老师竞聘演讲稿 16页

幼儿园班主任工作经验交流发言稿范文(精选10.. 21页

幼儿园毕业典礼老师致辞(精选19篇) 20页

幼儿园新学期教师发言稿汇编8篇 8页

工资管理系统的数据库课程设计模板 12页

幼儿园工作经验交流会领导发言稿(精选13篇).. 27页

幼儿园小班下学期社会教案《开心宝宝》含反思.. 4页

幼儿园家长代表发言稿范文(精选5篇) 7页

幼儿园大班的家长会发言稿(通用15篇) 63页

幼儿园大班学生开学典礼的发言稿(精选11篇).. 13页

幼儿园关爱残疾人国旗下讲话稿范文(精选6篇).. 6页

工程技术规范围墙 24页

幼儿园优秀教师自我评价范文(通用5篇) 4页

幼儿园中班家长会总结性发言稿参考(通用11篇.. 40页

幸福的句子集锦2篇 8页

年的记忆作文(合集15篇) 11页

年会主持词开场白范文(通用8篇) 9页

帕金森病的诊断与治疗 72页

师傅发言稿范文(通用7篇) 8页

工程类年度个人工作总结(精选20篇) 46页

工匠精神的感悟(8篇) 8页

工厂安全生产管理制度 2页

工作餐供应制度模板 2页

小班有关近视的教案(精选13篇) 23页