文档介绍:第二章分解因式
分解因式
?
(1)单项式乘以单项式
(2)单项式乘以多项式: a(m+n)=am+an
(3)多项式乘以多项式: (a+b)(m+n)=am+an+bm+bn
?
(1)平方差公式: (a+b)(a-b)=a2-b2
(2)完全平方公式: (a±b)2=a2±2ab+b2
复习与回顾
复习与回顾
:
(1) 3a(a-2b+c)
(2) (a+3)(a-3)
(3) (a+2b)2
(4) (a-3b)2
解: (1) 3a(a-2b+c)
=3a2-6ab+3ac
(2) (a+3)(a-3)=a2-9
(3) (a+2b)2=a2+4ab+4b2
(4) (a-3b)2= a2-6ab+9b2
做一做
计算下列个式:
3x(x-1)= _____
m(a+b+c) = _____
(m+4)(m-4)= ____
(x-3)2= _______
a(a+1)(a-1)= ____
根据左面的算式填空:
(1) 3x2-3x=_______
(2) ma+mb+mc=______
(3) m2-16=_________
(4) x2-6x+9=________
(5) a3-a=______
993-99能被100整除吗?你是怎样想的?与同伴交流.
小明是这样想的:
993-99=99×992-99 ×1
=99 ×(992-1)
=99 (99+1)(99-1)
= 99×100×98
所以, 993-99能被100整除.
你知道每一步的根据吗?
想一想: 993-99还能被哪些整数整除?
议一议
由a(a+1)(a-1)得到a3-a的变形是什么运算?
由a3-a得到a(a+1)(a-1)的变形与它有什么不同?
答:由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形与上面的变形互为逆过程.
因式分解定义
把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.
●想一想: 分解因式与整式乘法有何关系?
分解因式与整式乘法是互逆过程
练习一理解概念
判断下列各式哪些是整式乘法?哪些是因式分解?
(1).x2-4y2=(x+2y)(x-2y)
(2).2x(x-3y)=2x2-6xy
(3).(5a-1)2=25a2-10a+1
(4).x2+4x+4=(x+2)2
(5).(a-3)(a+3)=a2-9
(6).m2-4=(m+4)(m-4)
(7).2 πR+ 2 πr= 2 π(R+r)
因式分解
整式乘法
整式乘法
因式分解
整式乘法
因式分解
因式分解
练习二试一试
把下列个式写成乘积的形式:
(1). 1-x2
(2). 4a2+4a+1
(3). 4x2-8x
(4). 2x2y-6xy2
(5). 1-4x2
(6). x2-14x+49
=(1+x)(1-x)
=(2a+1)2
=4x(x-2)
=2xy(x-3y)
=(1-2x)(1+2x)
=(x-7)2
练习三拓展应用
1. 计算: 7652×17-2352 ×17
解: 7652×17-2352 ×17
=17(7652 -2352)=17(765+235)(765 -235)
=17 ×1000 ×530=9010000
2. 20042+2004能被2005整除吗?
解: ∵20042+2004=2004(2004+1)
=2004 ×2005
∴ 20042+2004能被2005整除