文档介绍:高一数学综合知识点
高一知识点总结(必修一)
一、集合
集合有关概念
1、集合的含义
2、集合的中元素的三个特性:①元素的确定性如:世界上最高的山
②元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
③元= λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积
已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
四、三角函数
1、善于用“1“巧解题
2、三角问题的非三角化解题策略
3、三角函数有界性求最值解题方法
4、三角函数向量综合题例析
5、三角函数中的数学思想方法
15、正弦函数、余弦函数和正切函数的图象与性质:
图象定义域值域最值当时,;当
时,.当时,
;当
时,.既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在
上是增函数;在
上是减函数.在上是增函数;在
上是减函数.在
上是增函数.对称性对称中心
对称轴对称中心
对称轴对称中心
无对称轴
(必修四)
角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角.
第一象限角的集合为
第二象限角的集合为
第三象限角的集合为
第四象限角的集合为
终边在轴上的角的集合为
终边在轴上的角的集合为
终边在坐标轴上的角的集合为
3、与角终边相同的角的集合为
4、已知是第几象限角,确定所在象限的方法:先把各象限均分等份,再从轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域.
5、长度等于半径长的弧所对的圆心角叫做弧度.
口诀:奇变偶不变,符号看象限.
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π α的三角函数值与
α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-
cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=
tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
其他三角函数知识:
同角三角函数基本关系
⒈同角三角函数的基本关系式
倒数关系:
tanα ?cotα=1
sinα ?cscα=1
cosα ?secα=1
商的关系:
sinα/cosα=tanα=secα/cs
cα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
两角和差公式
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαc