文档介绍:该【考研数学题型总结 】是由【cjc201601】上传分享,文档一共【120】页,该文档可以免费在线阅读,需要了解更多关于【考研数学题型总结 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:.
!"#$%
!&'()
!*Taylor1)
!
'23456'
7
1.
2."#$%
;3.&'()
)
4.*Taylor1)
5.'23456'
7
1.?***@AB
CDEF
GDHIJ4
LMN
5.
6."#$%
7.&'()
lim/GxH&"H
P
8.'23456'
7
\]'2^_
'2
^_
d
1:.
efg
hijkl
@'fmnkop_qrs_tujLvwxy_z{|
}wx~C
I
'fy_
)z{
&'()
hC)
ABh7_
N
1.?***@AB
x4-1
1
lim^--
IX-1
|}1} ¡1¢utXH1,X1¥fAB¦?@
7hm-----------------=hm(x+1)¬+1)=6
A->1X]XT1
CDEF
x3-2
x
2
lim3
xTg3x+1
00
|}f­®CCD¯°)±z
,¦CCDEF²
00
%321-J-J
7lim,=limµ=¶
*T83x3+183+*3
¸¹ºfCCDE»x
¼½v!
0m>n
cix'1+Cl,,_iXn+,¾%
(2)lim------=<00m<n
XT83+.ÀÀ+Á
a„
mn
bn
(D)IJ4
3
limÂ+3_G+1)
XT+CO
|}CqCDIJ4
hIJ44@J)
7lim(7x2+3-Vx2+1)=lim+D
XT+00XT+CO
2
=lim./---/,=0
ÆG+3+&+1
V1+tanx-Vl+sinx
4
hm-----------3----------
ior
EQJ1+tanxJl+sinxtanx-sinx
É7Êlim----------!---------hmË/
xIJl+tanx-Jl+sinx
Ì1tanx-sinx1tanx-sinx1
=lim----=---,lim-----------=lim-----------=
z71+tanx+VT+sinxÎx2Ï“x4
2:.
¹Ñ_F CIJ4ÒC)
ABh7_
ÓÔ
LMN
LMNhlim=1]lim(l+-V=lim(l+=lim(l+xY=e,efMN
X>0XXT8JQ"->8A->0
ÕÖa®¦²×{ØNkeMN
x+1
5
Xl-i^m+ool
|}eMNØNÙÚÛÜ
ÝÞßÜz1,àܼáÜâ'ãC
x
6(l)lim(l-Ê(2)ä=8,
a
5.
|}
(1)nåI:
çx-0x~sinètanx~arcsinxarctanxln(l+x)ex-1,
1-cosx51,(1+ax)b-1abx
(2),éê)
B);
-x..x-xìí¾¾1A
lim7=lim=0hîïð
xfotan'xiox
(3)ñò
Kwxór
ÎôÆ.xln(l+x)
7
lim------------
XT01-cosx
.xln(l+x)[.x*x
7hm-----------=-=2.
1-cosxio12
-X
2
zcÀôsinx-x
8
hm------7
tan-x
sinx-xsinx-xcosx-11-4-x21
7lim-----=lim-----!=lim------!==limöf
tanxx3÷3x6
Ìsinx-sin(sinx\]sinx
9
lim------------ø.
sx4
Ì(sinx-sinsinx)sinxÌsinx-sinsinxÌcosx-cos(sinx)cosx
[7]lim-------------4-------------=lim----------z--------=lim---------------------------
XTXXTOx'xf03&X~
3:.
Ìcosx(l-cos(sin^))sin(sinx)cosxÌsinx1
=lim-------------------=hm---------------=lim-----=
r->3x1 6xXTO6X6
6."#$%
yIncos2x-ln(l4-sin2x)
10
hm-----------J---------
XTË
|}ûq9­
¦"#$%²
000
-2sin2xsin2x
Incos2x-ln(l+sin2x)limcos2xl+sinJ
7lim2
.v->0X2°2x
..sin2x-21
lim-----2=-3
2xcos2x1+sinx
x2-fcos(r)<7r
U
limX------.
XTsinux
|}ÿ
x2-cos/2J/x234jcosr2Jr
2x-2xcosx4
limlim%c%10lim9
.r-*0sin'°xA->0xA->010x
i4±8
1-COSXx1
lim8
x%05x10
7.89:;<lim/=/>
2
?12
******@l+ln(l+x)DE
FG(1)HIJK4L89:;<MNJKOP
(2)QRx%>0Tln(l+x)~V
ln[l+ln(l+x)]lim]^_12
lim[l+ln(l+%)]'=lime"giOXe
?13a
lim4
XTOx3
xln|2+cosx2+cosx
In
b<=limL-1r3
R%=lim
x->0Xx2
./]cosx-1.
ln(1+-------)
3cosx-\1
lim2lim
10X',v->03x26
.f.(l+x)*-e
***@hiDhm----------
XTOx)
lmno9
?14
limz?sin%|
4:.
FGstru<9k
vw9k
xyz{|}~OP{
lmno9
7
=
2-rf--1]
limfxsin-x\xsin--1
=limeIx=limey6
xf+XXT+OOy->0+
lim"sin%=e6
-nJ
9k
JK
n9k
JK
JK~
(1)
lm;
(2)¡¢£
=
..(111D
?15a
lim-,-H%.2%2+¦¦¦-!%.2%2
T'r+r7n+2yjn+n)
FG
lmt/(x)©******@0,1D=
f(x)dx
°Vl+x22
FG
(1)HK«4KI¬_txy­n+®+u<¯°¢£
"T8(ynj))
E
(2)¢£±²³´x;<
tµ¶n·´¸·¹=
lim
n->oo
n+nj
¯
hhm/==hmº:=1
”4>8/2,Mn>00/
7n+nyjn4-1
f111
lim]%c%=+%^----r++==1
j/+2j2+j
5:.
12
2"2"2n
?17lim-----+++"T
n->oon+1r
n++4
2n)
FGHK±²¢£«½¾JK=
2n
12n2,1---
n1¹4C4d,2"n
---------(2“+2 ++2")<-----+-7++7-<-(2+2 ++2 )
n+1n +1,1n
nH-+4
2n
112&]2n
..n
lim-----9-(2"+2"+:+2")=lim(2"+2"+:+2")
28n+1n4*8
=[2¿
In2In2
\
_1_2
2 2 2"1
lim-----+------++-----
n->&n4-1,1,1In2
2n7
10.ÀÁ~Â9k
JK
?18ÃÄX1,n2,ÅGlim%ÆÇÈH
48
É4L¡ÀÁÊË~¸ÀÁÌÍ~ÎÂ9k~
ÏÅG9k
ÆÇ.
X
1X“=1+<2^-2
XÐ1X,fl>%
X"+l~n=1+-----1-k):
l++X“T(1+11)(1+Ñ)º9
23)2=
H9kÀÁÊË~Â,limx”ÆÇÒlimxn=A
“TOO“TOO
8wx“=1+A,l~'%,Ô"%>oo,A=!dA4,ÕÖ=!+.
l+x,,T1+A2
1+75
×limxn=
“TOO2
?19Ò9kx“ØÙ0<Ú<xH+l=sin%( =1,2,9)
i
I)ÅGlimx“ÆÇÈH
E(II)Dim
n >oon->ooX
Ýn)
(I)¯0ÚÞß0à=sinÚ1ß.
áÕ0âã=sinx,41ä=1,2,49kå%æ~Â.
wtN±L=ç*1,(¯èé0T,sinxx),~x"+1x“ê9kx“ÀÁÌÍ,
%%
6:.
ëvÀÁÌÍ~ÎÂ9k~
Ä
limX”ÆÇ.
“T8
Òlimxn=l,Çxn+lsinx¢Ôfoo,Õ/=sinZ,Õ/=0,×limx“=O.
?1 >00n >oo
1
X“íîï
(ID¯limlimvðiñÄH
r°ò,
“fc84>8
--1sinx-x'
lim%sinxlimeó=lime1e6ðzéñ
.V->0+x,v4>0+1
/.Ýõ
sinxnö6
ëlimlim=e
“T8
7:.
÷ø÷øzøúûüýþ¹ÿ
ù
1.!"
#2.
3.
1.
$%limE=0,&'()*!"++,-P.
/
2.
lim1=+oo,=co,lim|El=oo,&'()*!"++,-.
34
4.
5
61y=/x(789:;<6$%
=!"lim/x>(?
(2)lim/(x)=/(x0)o
@
AB&Cy=/x(
5D
E8F
GH!"IJKL
M
N
JGH!"O>(MGH!"PIJQR
M
ESF
JGH!"TU<8*P>(
8:.
ESV
DD
WXYZ.!"WX[)]WX ^_
`!"a.\b)FWXc
1.
$%lim/?=0,&'()*!"++,-l.
m'no(1)'8*(r).stun(v*!"+,-
()*!"+,-
.(w8*!"+,-P8.
Xy>0{sinx.Xy>1
{sinxP.?
(2)0.8K?
(3)/+3/(x-0),a?(xfoo),
a?
(8+,-
$%lim\=0,&'l.ap=o(a)?
$%lim2=8,&'1.a.
a
$%lim2=cw0,&'1a.?
a
$%1114=
=0>0,&'1. ¡a=0(1).
a
$%lim2=1,&'/?a.a-j3.
a
¢1£¤xy>0{a(x)=kx?6(x)=Jl+xarcsinx-Jcosx.,¨k.
)x)[.71+xarcsinx-Vcosx
m\o°X±,~~~~=lim---------------------
a(x)1
kx
xarcsinx+1-cosx
lim-----.=---
A->0¯(Jl+xarcsinx+Jcosx)
1xarcsinx+1-cosx3,
yylim----------------=y=1,
2kXTx~4k
3
ÃÄ
4
¢2£xy>0+{a=J£cos²³1=j£tan¶³,7=/sin/1*34J4Jr,¸r¹º»¸(¼½
.¸(¾½8*
¸r¿À.()
a)a, ,)a,y, ,c)/3a,)0,y,a.
9:.
m'no(1)ÅÆÇÈv*/ɼÊ8¸¿À?
(2)˼Ì8
m\oa'=cosx2(0)1=2xtanx(2)/=yDsin(J7)“l),ÏÐB
2dx
¢3£±/(x)(x=07Ò:Ó<SËÔ/(O),/'(O),/"(O)wO.×n£>(Ø
88ÙYa,6,c,»Ã¤³fOHÛ
af(h)+bf(2h)+cf(3h)-f(0)=o(h2).
ÜÝÞßàáâãäålim>3+bfQh)£/(3¶)y/(0);0
-0h-
çè
/(X)
hmafW+bf(2h)+cf(3h)-f^=limb(0)+/(0)+(/(0)y/(0)=0
x-0x->0
/(0)w0,Q+/?+C-1=0
HmD(6)+é(2¶)+é(3¶)-/(0)êë+2"'ì)+3/í?)=0
Xfoh202/i
îï'(0)+2/'(0)+34'(0)=0,r(0)w0,a+2bb+3c=0
0000000000900
m×oð
2.
lim^=+oo,lim/?=-oo,limlò1=8,&'()*!"++,-l.
[£¤ó(8+,-{
(1)ô/(x)¨õ8
f(x)
(2)ô/(x)Ô/(X)HO,¨õ8
/(x)
m'noö\nn<n<nk<a'\a>1)<nn(øfoo)
34
$P>(M>0»úVxc/,O<I/(x)KM,¨C/(x)(/î4
lim/(x)=8,¨(Qy5,
)î4,lim/(x)=oo,¨(a,+oo)î4
x->axf+oo
¢4£xy0{õþÿ1,(C)
XX
a)
b)
c)
d)
.
4.
10:.
y=/(x)!"#$%&'()*+,
(1)-.Hm/(x)1!
Xf0
5lim/(x)=/(xo)9
:;<=y=/(x)!">9
+,/(x)!?***@A(a,b)(B%"CD=/(x)!?***@A(a,b)(;+,
f(x)!?***@A(a,b)(!"aF!"bGD=/(x)!******@AI,JK9
+,lim/(x)=/(/),<L/(x)!"“°G9
+,lim/(%)=/(X9),<L/(x)!"“°F9
11anx
l-eT
-------,x>0,
X
Q5S/(%)=.arcsin!ZDa=(-2)9
ae2x,x<0,
lim/(%)=-2,limf(x)=a,a=-2
X->XQ
5
]/(x)!"/$^_&'()*.!`abc+,/(x)cdefghi%:
!x=x(,k)*
l!x=/)*lim/(x)1!
l!x=x0)*mlimf(x)1!/(x0);
X>XQX
D/(x)!"X9no"X9=n/(X)"pAq".
Aq"X9rsS
:G-./(t)uF-.Tv)C1!
w^Aq"S/(X)=/(XQ),(xy)*zi)
{|Aq":/})*/&),
G-./(%)uF-./(X
)%1!
Aq"Slim/(x)=oo,
XfXo
r%sAq"jGF-.
(w^Aq")
Aq"(GF-.C1!GF-.
({|Aq")
sAq"(GF-.%1!)
6S/(x)=,_Aq"s9
x2-3x+2
r!)*'(CAq"))*prr"9
11:.
Ink
lim/(x)=lim££££x£:8,x=0sAq"
xfO-3x+2
¥Inx1/Y
=hm-2--------==-1,x=l%sAq"
x->lix-3x+2I2%-3
..Inx
=lim---------=00,x=2sAq"
XT2z2%2-3x+2
X
/(x)=lim[ªSinKtisinz-sinx/(x)Aq"¬s.
Q7S
/->xI­sinx)
.-s-i-n-r--1+1),sin/Tcos/
..ksinx)..x(-s-i-n-x--1)]jmA-s-i-n-x-*
/(X)_2h-®mx---s-iSn--/---s-in
--x----_¯_h*m*
sin/-sinx_^r->xcos/_^sinA
X=0w^Aq"X=2k7T(k#0)sAq"
ln(l+4zx3)
x<0
x-arcsinx
Q8Sf(x)=<6x=0,a-2´/(x)!x=0"x=0w^Aq"9
C+X2CIX£1
x>0
.X
xsin£
4
ln(l+ax3)¥ax3
/(O-O)=lim/(x)=limhm-----------
x->(rXT9-X-arcsinxkt9-x-arcsinx
..3ax2..3ax23ax2,
=hm----------=lim-lim-------=-062.
Xf01Xf(TVi-x2-iA->012
1---,-X
l-x22
e<lx+x2£(XX£1
/(0+0)=limf(x)=lim
D*.SO-.x
xsin£
4
.¥e+%%QiCl?aX+2x_CL-2A
=4lim£24lim------------=2a~+4.
x->0+Xx->o+2x
º/(0-0)=/(0+0),,%69=2»2+4,¼»=£1p»=%2.
½a=-l´lim/(x)=6=/(0)A¾f(x)!x=0¿.
x->0
½a=-2´lim/(x)=12^/(0),Àox=0f(x)w^Aq".
.&0
ex-b
Q5SÁ)»ÂÃz¼/(x)=-----sAq"x=0uw^Aq"Ä=19
(x-tz)(x-l)
ex-h
lim/(x)=limAÅlim(e"-È)=0,h=e
Xf1A->1
----------------------=00
(x-fl)(x-l),Q=0
12:.
ÉÊÌÍÉÊzÊÎÏÐÑ)*ÑÒÓÔ*uÕrÖ×ØÙÏ
ËÐÑÚfÑÛÜ9
1I.áÑÜ
Ý
2I.âÛãÁ)ÑÜ
"
+y=/(x)s(t)ÑÜ%%äåÑÜ
Þ
4I.æçKèérêëÑ
Tß'­
%­ìíÖ×
Ñu¬æh
ÉÑÌÍGFÑî
3.ÑÒÓÔ*
4.Õr)*
­ÑÛÜ
1.Ñïðu¬ñò
Ê
2.óôÑÜ
3.áÑÜ
4I.âÛãÁ)ÑÜ
b
5.-õöÛãêëÑÜ
+y=/“÷øÑÜ%%äåÑÜ
Ñ
8.æçKèérêëÑ
ù
13:.
eúÑ>ÕrÜûü
%ýÑ>ÕrÕérìþÿ
!"#$%&'(
)*),-./.123456789:.
;<=>
1.?***@1A
lim/*)-/(4)=lim/(X0+Ax)-/(4)=lim/Uo+/z)-/(^o)
T94X-Xo&T°Ar2°h
[1]^/(x)_/
/?a>0h/ca>oh
(3)+a);/(e();f)]
h;!n2n
2.%ijklm
[2]^/(x)=lxaale(x),0(x)_x=Qrst_uvwxy/(x)_z=! {
|}~lim-_Hm-°(x)=-9(4)
XT!-XClXT!;
r/;/r//
lim-----------=lim(p(x)=(h)
XT!*X-Cl
CD(p(a)=(p(a)(p(a)=0
,f(x)_=a !
|~/(x)=1x1,/(x)=x\x\,f(x)=x(x+l)(x-l)I-11e !
Y"r<1
[3]/(©=(~ ./!/?!
ax+bx>1
|}~(1)/(1)_x=l _x=lrs
lim/(x)=lim/(x)=/(I),!1
A->Ex3+
(2)/(x)_x=lkl
/=lim"+=2
2!-Ax,
a,!(1+0+-\x
/.(1)=lim---------------=lim+----=a
ArTfAxAx->0Ax,
!=2, ¡¢£;1,¤¥¦!=2,6=-1
/(x) !
3.¨©ª
^y=/(%)_­_/'(/)¯y=f(x)3;(%o/(x0))
°±²³!´
°±,-]yaµ=/(/)!a/)¶·±,-]-aaU-x0)o
f\x0)
[4]y=/°±,-´°±¸±y=x+l²³¹º!
|}~^°(x(),%),¯]y=x2,
00
14:.
»°±²³y=x+l¹º¯y'l1,
}¼]X°=¶TTT()=¶
°±,-]y--^x--y=xL!
424
[5])=/3)»,-xy+21nx=)/./y=/(x)_(1,1)°±,-!|}~½
4./ª
^y=/(x)_¾¿ÀÁ/ª/?x0+Ac_¿ÀÁÃÄÅ1ÆÇÆ
È)'=/(x()+Ar)--(Xo) 56Ay=AAx+0(Ax),@ÉAÊeËÌÍΡ0(Ax)Ê
G-0
ÏaÐÑÒÓÔ,ÕvÖy=/(x)_/Ê !¡×Øy=/(x)_
¹ÙÍÚ1ÆÇÆArÛ
Ü!dy=AAr!
£,·
1.ÝÞ?@Ùß(½)2,àá·(½)3.&·
Id2v
[6]»,-x-y+siny=0¤./&y=/(x)£ÑT
2dx
|}~âãäx¼]l-y'+5cosy=0
2d2yd2-2siny*yf_-4siny
T./=---»´¼
2-cosydx2dx\2-cosy(2-cosy)2(2-cosy)3
-y,f+g(y"cosy-ysinyT=0
,·£]ä(*)Þåâæ¼
\2
(2
”
.-cosy.
.),h=2=7smy-4siny
112-cosy2-cosy(2-cosy)3
cosy,
4.',-./·
x=
(1)ç',-./xyèÀéê,¯Ö´»',-¤./!
y
(2)ëì,·
dy=,d-y4
dx(p'{t}dtdx2dx
x=Esiní,./dyd-y
[7:y=/(x)»',-.'T"
y=sintdxdx
dx=sintdt%CW
|}~4
dy=costdt
15:.
d2y__1
J(a)=-esc2tdt
dxdx2sin31
[8:y=/(x)»,-ô,"./õ
ö-y+siny=ldx
|}~½
5.
)*,-56·
^
)*,-p=p(e),ø¸ù)*J"='3)cos",ú;ûüø¸