1 / 22
文档名称:

人教版生物必修二知识点总结 (2).pdf

格式:pdf   大小:694KB   页数:22页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

人教版生物必修二知识点总结 (2).pdf

上传人:260933426 2022/10/21 文件大小:694 KB

下载得到文件列表

人教版生物必修二知识点总结 (2).pdf

相关文档

文档介绍

文档介绍:该【人教版生物必修二知识点总结 (2) 】是由【260933426】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【人教版生物必修二知识点总结 (2) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:.
生物必修二知识点总结
郑州一中1106班高唱
一、遗传的基本规律
(1)基因的分离定律
①豌豆做材料的优点:
(1)豌豆能够严格进行自花授粉,而且是闭花授粉,自然条件下能保持纯种。
(2)品种之间具有易区分的性状。
②人工杂交试验过程:去雄(留下雌蕊)→套袋(防干扰)→人工传粉
③一对相对性状的遗传现象:具有一对相对性状的纯合亲本杂交,后代表现为一种表现
型,F1代自交,F2代中出现性状分离,分离比为3:1。
④基因分离定律的实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有
一定的独立性,生物体在进行减数分裂时,等位基因会随同源染色体的分开而分离,分别进
入到两个配子中,独立地随配子遗传给后代。
(2)基因的自由组合定律
①两对等位基因控制的两对相对性状的遗传现象:具有两对相对性状的纯合子亲本杂交
后,产生的F1自交,后代出现四种表现型,比例为9:3:3:1。四种表现型中各有一种纯
合子,分别在子二代占1/16,共占4/16;双显性个体比例占9/16;双隐性个体比例占
1/16;
单杂合子占2/16×4=8/16;双杂合子占4/16;亲本类型比例各占9/16、1/16;重组类型比

各占3/16、3/16
②基因的自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不
干扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同
源染色体上的非等位基因自由组合。
③运用基因的自由组合定律的原理培育新品种的方法:优良性状分别在不同的品种中,
先进行杂交,从中选择出符合需要的,再进行连续自交即可获得纯合的优良品种。
记忆点:
:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;
子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。
:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,
生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,
独立地随配子遗传给后代。
,而表现型则是基因型的表现形式。表现型=基因型+环境
条件。
:位于非同源染色体上的非等位基因的分离或组合是互不干
扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源
染色体上的非等位基因自由组合。在基因的自由组合定律的范围内,有n对等位基因的个体
产生的配子最多可能有2n种。:.
二、细胞增殖
(1)细胞周期:指连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止。
(2)有丝分裂:
分裂间期的最大特点:完成DNA分子的复制和有关蛋白质的合成
分裂期染色体的主要变化为:前期出现;中期清晰、排列;后期分裂;末期消失。特别
注意后期由于着丝点分裂,染色体数目暂时加倍。
动植物细胞有丝分裂的差异:;。
(3)减数分裂:
对象:有性生殖的生物
时期:原始生殖细胞形成成熟的生殖细胞
特点:染色体只复制一次,细胞连续分裂两次
结果:新产生的生殖细胞中染色体数比原始生殖细胞减少一半。
精子和卵细胞形成过程中染色体的主要变化:减数第一次分裂间期染色体复制,前期
同源染色体联会形成四分体(非姐妹染色体单体之间常出现交叉互换),中期同源染色体排
列在赤道板上,后期同源染色体分离同时非同源染色体自由组合;减数第二次分裂前期染色
体散乱地分布于细胞中,中期染色体的着丝点排列在赤道板上,后期染色体的着丝点分裂染
色体单体分离。
有丝分裂和减数分裂的图形的鉴别:(以二倍体生物为例)
……减数第二次分裂
、形成四分体、排列于赤道板或相互分离……减数第一次分裂
……有丝分裂
记忆点:
,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半。
,说明染色体具一定的独立性;同源的两个
染色体移向哪一极是随机的,则不同对的染色体(非同源染色体)间可进行自由组合。

,形成四个精细胞,精细胞再经过复杂的变化形成精子。
,只形成一个卵细胞。
,减数分裂和受精作用对于维持每种生物前后代体细胞中
染色体数目的恒定,对于生物的遗传和变异,都是十分重要的
三、性别决定与伴性遗传
(1)XY型的性别决定方式:雌性体内具有一对同型的性染色体(XX),雄性体内具有一对
异型的性染色体(XY)。减数分裂形成精子时,产生了含有X染色体的精子和含有Y染色
体的精子。雌性只产生了一种含X染色体的卵细胞。受精作用发生时,X精子和Y精子与
卵细胞结合的机会均等,所以后代中出生雄性和雌性的机会均等,比例为1:1。
(2)伴X隐性遗传的特点(如色盲、血友病、果蝇眼色、女娄菜叶形等遗传)
①男性患者多于女性患者
②属于交叉遗传(隔代遗传)即外公→女儿→外孙:.
③女性患者,其父亲和儿子都是患者;男性患病,其母、女至少为携带者
(3)X染色体上隐性遗传(如抗VD佝偻病、钟摆型眼球震颤)
①女性患者多于男性患者。
②具有世代连续现象。
③男性患者,其母亲和女儿一定是患者。
(4)Y染色体上遗传(如外耳道多毛症)
致病基因为父传子、子传孙、具有世代连续性,也称限雄遗传。
(5)伴性遗传与基因的分离定律之间的关系:伴性遗传的基因在性染色体上,性染色体也
是一对同源染色体,伴性遗传从本质上说符合基因的分离定律。
记忆点:
:常染色体和性染色体。
生物的性别决定方式主要有两种:一种是XY型,另一种是ZW型。
:
(1)伴X染色体隐性遗传的特点:男性患者多于女性患者;具有隔代遗传现象(由于致
病基因在X染色体上,一般是男性通过女儿传给外孙);女性患者的父亲和儿子一定是患
者,反之,男性患者一定是其母亲传给致病基因。
(2)伴X染色体显性遗传的特点:女性患者多于男性患者,大多具有世代连续性即代代都
有患者,男性患者的母亲和女儿一定是患者。
(3)伴Y染色体遗传的特点:患者全部为男性;致病基因父传子,子传孙(限雄遗传)。
四、基因的本质
(1)DNA是主要的遗传物质
①生物的遗传物质:在整个生物界中绝大多数生物是以DNA作为遗传物质的。有DNA
的生物(细胞结构的生物和DNA病毒),DNA就是遗传物质;只有少数病毒(如艾滋病
毒、SARS病毒、禽流感病毒等)没有DNA,只有RNA,RNA才是遗传物质。
②证明DNA是遗传物质的实验设计思想:设法把DNA和蛋白质分开,单独地、直接地
去观察DNA的作用。
(2)DNA分子的结构和复制
①DNA分子的结构
:脱氧核苷酸(由磷酸、脱氧核糖和碱基组成)。
:由脱氧核苷酸按一定的顺序聚合而成
:
:规则的双螺旋结构。
:多样性、特异性和稳定性。
②DNA的复制
:有丝分裂间期或减数第一次分裂间期
:边解旋边复制;半保留复制。
:模板(DNA分子的两条链)、原料(四种游离的脱氧核苷酸)、酶(解旋酶,
DNA聚合酶,DNA连接酶等),能量(ATP)
:通过复制产生了与模板DNA一样的DNA分子。
:通过复制将遗传信息传递给后代,保持了遗传信息的连续性。
(3)基因的结构及表达
①基因的概念:基因是具有遗传效应的DNA分子片段,基因在染色体上呈线性排列。:.
②基因控制蛋白质合成的过程:

转录:以DNA的一条链为模板通过碱基互补配对原则形成信使RNA的过程。
翻译:在核糖体中以信使RNA为模板,以转运RNA为运载工具合成具有一定氨基酸
排列顺序的蛋白质分子
记忆点:
,而噬菌体的各种性状也是通过DNA传
递给后代的,这两个实验证明了DNA是遗传物质。
。细胞内既含DNA又含RNA和只含DNA的生物遗传物
质是DNA,少数病毒的遗传物质是RNA。由于绝大多数的生物的遗传物质是DNA,所以
DNA是主要的遗传物质。
,构成了DNA分子的多样性,而碱基对的特定的排列顺序,
又构成了每一个DNA分子的特异性。这从分子水平说明了生物体具有多样性和特异性的原
因。
。基因的表达是通过DNA控制蛋白质
的合成来实现的。
;通过碱基互补配对,保证了复制
能够准确地进行。在两条互补链中的比例互为倒数关系。在整个DNA分子中,嘌呤
碱基之和=嘧啶碱基之和。整个DNA分子中,与分子内每一条链上的该比例相同。
,是由于子代获得了亲代复制的一份DNA的缘故。
***段,基因在染色体上呈直线排列,染色体是基因的载体。
(碱基顺序)不同,因此,不同的基因含有不同
的遗传信息。(即:基因的脱氧核苷酸的排列顺序就代表遗传信息)。
,信使RNA
中核糖核苷酸的排列顺序又决定了氨基酸的排列顺序,氨基酸的排列顺序最终决定了蛋白质
的结构和功能的特异性,从而使生物体表现出各种遗传特性。基因控制蛋白质的合成时:基
因的碱基数:mRNA上的碱基数:氨基酸数=6:3:1。氨基酸的密码子是信使RNA上三个
相邻的碱基,不是转运RNA上的碱基。转录和翻译过程中严格遵循碱基互补配对原则。注意:
配对时,在RNA上A对应的是U。
。一些基因是通过控制酶的合成来控制代谢过程;
基因控制性状的另一种情况,是通过控制蛋白质分子的结构来直接影响性状。
五、生物的变异
(1)基因突变
①基因突变的概念:由于DNA分子中发生碱基对的增添、缺失或改变,而引起的基因
结构的改变。
②基因突变的特点:.

③基因突变的意义:生物变异的根本来源,为生物进化提供了最初的原材料。
④基因突变的类型:自然突变、诱发突变:.
⑤人工诱变在育种中的应用:通过人工诱变可以提高变异的频率,可以大幅度地改良生
物的性状。
(2)染色体变异
①染色体结构的变异:缺失、增添、倒位、易位。如:猫叫综合征。
②染色体数目的变异:包括细胞内的个别染色体增加或减少和以染色体组的形式成倍
地增加减少。
③染色体组特点:a、一个染色体组中不含同源染色体b、一个染色体组中所含的染色
体形态、大小和功能各不相同c、一个染色体组中含有控制生物性状的一整套基因
④二倍体或多倍体:由受精卵发育成的个体,体细胞中含几个染色体组就是几倍体;由
未受精的生殖细胞(精子或卵细胞)发育成的个体均为单倍体(可能有1个或多个染色体组)

⑤人工诱导多倍体的方法:用秋水仙素处理萌发的种子和幼苗。原理:当秋水仙素作
用于正在分裂的细胞时,能够抑制细胞分裂前期纺锤体形成,导致染色体不分离,从而引起
细胞内染色体数目加倍。
⑥多倍体植株特征:茎杆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物
质的含量都有所增加。
⑦单倍体植株特征:植株长得弱小而且高度不育。单倍体植株获得方法:花药离休培
养。单倍体育种的意义:明显缩短育种年限(只需二年)。
记忆点:
,它们在形态和功能上各不相同,但是携带者控
制一种生物生长发育、遗传和变异的全部信息,这样的一组染色体叫染色体组。
,包括基因突变、基因重组和染色体变异。基因突变
最大的特点是产生新的基因。它是染色体的某个位点上的基因的改变。基因突变既普遍存在,
又是随机发生的,且突变率低,大多对生物体有害,突变不定向。基因突变是生物变异的根
本来源,为生物进化提供了最初的原材料。基因重组是生物体原有基因的重新组合,并没产
生新基因,只是通过杂交等使本不在同一个体中的基因重组合进入一个个体。通过有性生殖
过程实现的基因重组,为生物变异提供了极其丰富的来源。这是形成生物多样性的重要原因
之一,对于生物进化具有十分重要的意义。上述二种变异用显微镜是看不到的,而染色体变
异就是染色体的结构和数目发生改变,显微镜可以明显看到。这是与前二者的最重要差别。
其变化涉及到染色体的改变。如结构改变,个别数目及整倍改变,其中整倍改变在实际生活
中具有重要意义,从而引伸出一系列概念和类型,如:染色体组、二倍体、多倍体、单倍体
及多倍体育种等。
六、人类遗传病与优生
(1)优生的措施:禁止近亲结婚、进行遗传咨询、提倡适龄生育、产前诊断。
(2)禁止近亲结婚的原因:近亲结婚的夫妇从共同祖先那里继承同一种致病基因的机会大
大增加,所生子女患隐性遗传病的概率大大增加。
记忆点:
、并指、软骨发育不全是单基因的常染色体显性遗传病;抗维生素D佝偻病是单基
因的X染色体显性遗传病;白化病、苯***尿症、先天性聋哑是单基因的常染色体隐性遗:.
传病;进行性肌营养不良、红绿色盲、血友病是单基因的X染色体隐性遗传病;唇裂、无
脑儿、原发性高血压、青少年型糖尿病等属于对基因遗传病;另外染色体遗传病中常染色体
病有21三体综合症、猫叫综合症等;性染色体病有性腺发育不良等。
七、细胞质遗传
①细胞质遗传的特点:母系遗传(原因:受精卵中的细胞质几乎全部来自母细胞);后
代没有一定的分离比(原因:生殖细胞在减数分裂时,细胞质中的遗传物质随机地、不均等
地分配到子细胞中去)。
②细胞质遗传的物质基础:在细胞质内存在着DNA分子,这些DNA分子主要位于线
粒体和叶绿体中,可以控制一些性状。
记忆点:
,而精子中只含有极少量的细胞质,这就是说受精卵中的细胞
质几乎全部来自卵细胞,这样,受细胞质内遗传物质控制的性状实际上是由卵细胞传给子代,
因此子代总表现出母本的性状。
:母系遗传;后代不出现一定的分离比。细胞质遗传特点形成
的原因:受精卵中的细胞质几乎全部来自卵细胞;减数分裂时,细胞质中的遗传物质随机地、
不均等地分配到卵细胞中。细胞质遗传的物质基础是:叶绿体、线粒体等细胞质结构中的
DNA。
。这是因为,尽管在细胞质中找不到染
色体一样的结构,但质基因和核基因一样,可以自我复制,可以通过转录和翻译控制蛋白质
的合成,也就是说,都具有稳定性、连续性、变异性和独立性。但细胞核遗传和细胞质遗传
又相互影响,很多情况是核质互作的结果。
八、基因工程简介
(1)基因工程的概念
标准概念:在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基
因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组细胞在受体细胞内表达,
产生出人类所需要的基因产物。
通俗概念:按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放
到另一种生物的细胞里,定向地改造生物的遗传性状。
(2)基因操作的工具
——限制性内切酶(简称限制酶)。
①分布:主要在微生物中。
②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。
③结果:产生黏性未端(碱基互补配对)。
——DNA连接酶。
①连接的部位:磷酸二酯键,不是氢键。
②结果:两个相同的黏性未端的连接。
——运载体
①作用:将外源基因送入受体细胞。:.
②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。
c、有某些标记基因。
③种类:质粒、噬菌体和动植物病毒。
④质粒的特点:质粒是基因工程中最常用的运载体。
(3)基因操作的基本步骤

目的基因概念:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干
扰素基因等。
提取途径:

用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,
将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA
分子(重组质粒)

常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞

检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正
常生长,说明细胞中含有重组质粒。
表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入
棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。
(4)、食品工业



记忆点:
:能够在宿主细胞中复制并稳定地保存;具有多个限制酶
切点,以便与外源基因连接;具有某些标记基因,便于进行筛选。质粒是基因工程最常用的
运载体,它存在于许多细菌以及酵母菌等生物中,是能够自主复制的很小的环状DNA分子。
:①提取目的基因②目的基因与运载体结合③将目的基因导
入受体细胞④目的基因的检测和表达。
,受体细胞必须表现出特定的性状,才能说明目的基因完成
了表达过程。
,目前常用的运载体有:质粒、噬菌体、动植
物病毒等,目前常用的受体细胞有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞
等。
、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,
鉴定被检测标本的遗传信息,达到检测疾病的目的。
,达到治疗疾病的目的。
九、生物的进化:.
(1)自然选择学说内容是:过度繁殖、生存斗争、遗传变异、适者生存。
(2)物种:指分布在一定的自然区域,具有一定的形态结构和生理功能,而且在自然状态
下能够相互交配和繁殖,并能产生出可育后代的一群个体。
种群:是指生活在同一地点的同种生物的一群个体。
种群的基因库:一个种群的全部个体所含有的全部基因。
(3)现代生物进化理论的基本观点:种群是生物进化的基本单位,生物进化的实质在于种
群基因频率的改变。突变和基因重组、自然选择及隔离是物种形成过程的三个基本环节,通
过它们的综合作用,种群产生分化,最终导致新物种的形成。
(4)突变和基因重组产生生物进化的原材料,自然选择使种群的基因频率定向改变并决定
生物进化的方向,隔离是新物种形成的必要条件(生殖隔离的形成标志着新物种的形成)。
现代生物进化理论的基础:自然选择学说。
记忆点:

,其基本观点是:种群是生物进化的基本单
位,生物进化的实质在于种群基因频率的改变。突变和基因重组、自然选择及隔离是物种形
成过程的三个基本环节,通过它们的综合作用,种群产生分化,最终导致新物种的形成。
,在自然条件下基因不能自由交流的现象。包括
地理隔离和生殖隔离。其作用就是阻断种群间的基因交流,使种群的基因频率在自然选择中
向不同方向发展,是物种形成的必要条件和重要环节。
:生物进化是指同种生物的发展变化,时间可长可短,性状
变化程度不一,任何基因频率的改变,不论其变化大小如何,都属进化的范围,物种的形成
必须是当基因频率的改变在突破种的界限形成生殖隔离时,方可成立。
,都有发育成为完整个体所必需的全
部基因。
,细胞没有表现出全能性,而是分化为不同的组织器官,这是基因在特定的时
间和空间条件下选择性表达的结果。
1
生物必修2复****提纲(必修)
第二章减数分裂和有性生殖
第一节减数分裂
一、减数分裂的概念
减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。
在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色:.
体数目比体细胞减少一半。
(注:体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂
一次,新产生的细胞中的染色体数目与体细胞相同。)
二、减数分裂的过程
1、精子的形成过程:精巢(哺乳动物称睾丸)
减数第一次分裂
间期:染色体复制(包括DNA复
制和蛋白质的合成)。
前期:同源染色体两两配对(称联会),形成四分体。
四分体中的非姐妹染色单
体之间常常发生对等片段的互换。
中期:同源染色体成对排列在赤道板上(两侧)。
后期:同源染色体分离;非同源
染色体自由组合。
末期:细胞质分裂,形成2个子
细胞。
减数第二次分裂(无同源染色体)
前期:染色体排列散乱。
中期:每条染色体的着丝粒都排列在细胞中央的赤道板上。
后期:姐妹染色单体分开,成为两条子染色体。并分别移向细胞两极。
末期:细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。
2、卵细胞的形成过程:卵巢
三、精子与卵细胞的形成过程的比较
精子的形成卵细胞的形成:.
不同点形成部位精巢(哺乳动物称睾丸)卵巢
过 程有变形期无变形期
子细胞数一个精原细胞形成4个精子一个卵原细胞形成1个卵细胞+3
个极体
相同点精子和卵细胞中染色体数目都是体细胞的一半
四、注意:
(1)同源染色体①形态、大小基本相同;②一条来自父方,一条来自母方。
(2)精原细胞和卵原细胞的染色体数目与体细胞相同。因此,它们属于体细胞,通过有丝
分裂
的方式增殖,但它们又可以进行减数分裂形成生殖细胞。
(3)减数分裂过程中染色体数目减半发生在减数第一次分裂,原因是同源染色体分离并进入不同的子细胞。所以减数第二次分裂过程中无同源染色体。
(4)减数分裂过程中染色体和DNA的变化规律
(5)减数分裂形成子细胞种类:
假设某生物的体细胞中含n对同源染色体,则:
它的精(卵)原细胞进行减数分裂可形成2n种精子(卵细胞);
它的1个精原细胞进行减数分裂形成2种精子。它的1个卵原细胞进行减数分裂形成1种
卵细胞。
五、受精作用的特点和意义
特点:受精作用是精子和卵细胞相互识别、融合成为受精卵的过程。精子的头部进入卵
细胞,尾部留在外面,不久精子的细胞核就和卵细胞的细胞核融合,使受精卵中
染色体的数目又恢复到体细胞的数目,其中有一半来自精子,另一半来自卵细胞。
意义:减数分裂和受精作用对于维持生物前后代体细胞中染色体数目的恒定,对于生物
的遗传和变异具有重要的作用。
六、减数分裂与有丝分裂图像辨析步骤:
一看染色体数目:奇数为减Ⅱ(姐妹分家只看一极)
二看有无同源染色体:没有为减Ⅱ(姐妹分家只看一极)
三看同源染色体行为:确定有丝或减Ⅰ
注意:若细胞质为不均等分裂,则为卵原细胞的减Ⅰ或减Ⅱ的后期。
同源染色体分家—减Ⅰ后期
姐妹分家—减Ⅱ后期
例:判断下列细胞正在进行什么分裂,处在什么时期?:.
答案:减Ⅱ前期减Ⅰ前期减Ⅱ前期减Ⅱ末期有丝后期减Ⅱ后期减Ⅱ后期减Ⅰ后期
答案:有丝前期减Ⅱ中期减Ⅰ后期减Ⅱ中期减Ⅰ前期减Ⅱ后期减Ⅰ中期有丝中期
第二节有性生殖
,经过***生殖细胞(如精子和卵细胞)的
结合,成为合子(如受精卵)。再由合子发育成新个体的生殖方式。

,由于***生殖细胞分别来自不同的亲本,因此,由合子发育成的后代就
具备了双亲的遗传特性,具有更强的生活能力和变异性,这对于生物的生存和进化具
有重要意义。
第三章遗传和染色体
第一节基因的分离定律
一、相对性状
性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。
相对性状:同一种生物的同一种性状的不同表现类型。
二、孟德尔一对相对性状的杂交实验
1、实验过程(看书)
2、对分离现象的解释(看书)
3、对分离现象解释的验证:测交(看书)
例:现有一株紫色豌豆,如何判断它是显性纯合子(AA)还是杂合子(Aa)?
相关概念
1、显性性状与隐性性状
显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。
隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。
附:性状分离:在杂种后代中出现不同于亲本性状的现象)
2、显性基因与隐性基因
显性基因:控制显性性状的基因。
隐性基因:控制隐性性状的基因。:.
附:基因:控制性状的遗传因子(DNA分子上有遗传效应的片段P67)
等位基因:决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。
3、纯合子与杂合子
纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):
显性纯合子(如AA的个体)
隐性纯合子(如aa的个体)
杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状
分离)
4、表现型与基因型
表现型:指生物个体实际表现出来的性状。
基因型:与表现型有关的基因组成。
(关系:基因型+环境→表现型)
5、杂交与自交
杂交:基因型不同的生物体间相互交配的过程。
自交:基因型相同的生物体间相互交配的过程。(指植物体中自花传粉和雌雄异花植物的同
株受粉)
附:测交:让F1与隐性纯合子杂交。(可用来测定F1的基因型,属于杂交)
三、基因分离定律的实质:在减I分裂后期,等位基因随着同源染色体的分开而分离。
四、基因分离定律的两种基本题型:
正推类型:(亲代→子代)
亲代基因型子代基因型及比例子代表现型及比例
⑴AA×AAAA全显
⑵AA×AaAA:Aa=1:1全显
⑶AA×aaAa全显
⑷Aa×AaAA:Aa:aa=1:2: