1 / 4
文档名称:

初一数学《不等式与不等式组》知识点.doc

格式:doc   大小:59KB   页数:4页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

初一数学《不等式与不等式组》知识点.doc

上传人:莫比乌斯 2022/10/26 文件大小:59 KB

下载得到文件列表

初一数学《不等式与不等式组》知识点.doc

文档介绍

文档介绍:该【初一数学《不等式与不等式组》知识点 】是由【莫比乌斯】上传分享,文档一共【4】页,该文档可以免费在线阅读,需要了解更多关于【初一数学《不等式与不等式组》知识点 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一、目标与要求
,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
二、知识框架
三、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
四、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
五、知识点、概念总结
:用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。
:使不等式成立的未知数的值,叫做不等式的解。
:一个含有未知数的不等式的所有解,组成这个不等式的解集。
:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3。
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

(1)不等式F(x)<G(x)与不等式G(x)>F(x)同解。
(2)如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,那么不等式F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
(3)如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H(x)G(x)同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H(x)F(x)>H(x)G(x)同解。
(4)不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解
:
(1)如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
(2)如果x>y,y>z;那么x>z;(传递性)
(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法则)
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z。
(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)
:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
:
(1)去分母(运用不等式性质2、3)
(2)去括号
(3)移项(运用不等式性质1)
(4)合并同类项。
(5)将未知数的系数化为1(运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
:
一般先求出函数表达式,再化简不等式求解。
:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
了一个一元一次不等式组。
:
(1)求出每个不等式的解集;
(2)求出每个不等式的解集的公共部分;(一般利用数轴)
(3)用代数符号语言来表示公共部分。(也可以说成是下结论)

(1)大于大于取大的(大大大);
例如:X>-1,X>2,不等式组的解集是X>2
(2)小于小于取小的(小小小);
例如:X<-4,X<-6,不等式组的解集是X<-6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;

(1)同大取大
例如,x>2,x>3,不等式组的解集是X>3
(2)同小取小
例如,x<2,x<3,不等式组的解集是X<2
(3)大小小大中间找
例如,x<2,x>1,不等式组的解集是1<x<2
(4)大大小小不用找
例如,x<2,x>3,不等式组无解

(1)审清题意
(2)设未知数,根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答.
:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。