1 / 8
文档名称:

高中物理必修二知识点整理.doc

格式:doc   大小:107KB   页数:8页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高中物理必修二知识点整理.doc

上传人:莫比乌斯 2022/10/26 文件大小:107 KB

下载得到文件列表

高中物理必修二知识点整理.doc

相关文档

文档介绍

文档介绍:该【高中物理必修二知识点整理 】是由【莫比乌斯】上传分享,文档一共【8】页,该文档可以免费在线阅读,需要了解更多关于【高中物理必修二知识点整理 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。德胜学校高一物理校本学案粤教版高中物理必修二知识点汇总
时间班级姓名
第一章抛体运动
一、曲线运动

做曲线运动的物体,在某点的速度方向,
的速度方向时刻在改变,所以曲线运动一定是变速运动.(说明:曲线运动是变速运动,只是说明物
体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)
:
物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直
,物体做曲线运动的速率将增大;当物
体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合
外力的方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.

做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受
,轨迹向力的方向弯曲,但不会达到力的方向.
二、运动的合成与分解的方法
:平行四边形定则,等效分解。

(1)根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解.
(2)两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定.
①根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变
速运动;若合加速度变化(包括大小或方向)则为非匀变速运动.
②根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速
度的方向在同一直线上则为直线运动,否则为曲线运动.
③小船过河的两类问题:最短时间过河以及最短路程过河。
如图所示,用v1表示船速,.
以最小位移渡河:当船在静水中的速度大于水流速度时,小船可以垂直渡河,显然渡河的最小位移s等于河宽d,船头与上游夹角满足,此时渡河时间
三、平抛运动
平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动
飞行时间:t=,取决于物体下落的高度h,与初速度v0无关.
水平射程:x=v0t=v0,由平抛初速度v0和下落高度h共同决定.
第二章圆周运动

线速度v
角速度ω
向心加速度a
向心力Fn
公式
v=s/t
=2πr/T
=2πrf
ω=θ/t
=2π/T
=2πf
an=v2/r
=ω2r
=ωv
Fn=mv2/r
=mω2r
=mωv
意义
表示运动快慢
表示转动快慢
表示速度方
向变化快慢
向心力是合力。
单位
m/s
rad/s
m/s2
N
关系
v=ωr
F合=Fn=man
应用
同一圆周上各点线速度大
小相等。两轮传动时,两
圆边缘上各点线速度大小
相等。
同一个圆内各点角速
度相等。
是一个变化
量,方向始终
指向圆心。
是一个变化量,方向始
终指向圆心。

(1)向心力的来源
①做匀速圆周运动时,物体的合外力充当向心力.
②变速圆周运动中物体合外力沿垂直线速度方向的分量充当向心力。
(2)两个结论
①同一转动圆盘(或物体)上的各点角速度相同.
②皮带连接的两轮不打滑时,轮缘上各点的线速度大小相等.
(3)物体在竖直平面内的圆周运动是典型的变速圆周运动,只讨论最高点和最低点的情况
①绳约束物体做圆周运动
如图所示细绳系着的小球或在圆轨道内侧运动的小球,当它们通过最高点时,有N+mg=。
因N≥0,所以v≥,即为物体通过最高点的速度的临界值.
ⅰ。v=时,N=0,物体刚好通过轨道最高点,对绳无拉力或对轨道无压力.
ⅱ。v>时,N>0,物体能通过轨道最高点,对绳有拉力或对轨道有压力.
ⅲ。v<时,物体没有达到轨道最高点便脱离了轨道.
②在轻杆或管的约束下的圆周运动
如图所示杆和管对物体能产生拉力,+mg=,
因为N可以为正(拉力),也可以为负(支持力),还可以为零,故物体通过最高点的速度可以为任意值.
ⅰ。当v=0时,N=-mg,负号为支持力.
ⅱ。当v=时,N=0,对物体无作用力.
ⅲ。当0<v<时,N<0,对物体产生背向圆心的弹力.
ⅳ。当v>时,N>0,对物体产生指向圆心的弹力.
第四章机械能与能源
一、功
:,,符号是J.
,,可以看出:
判断一个力是否做功的几种方法
(1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当
α=90°,即力和作用点位移方向垂直时,力做的功为零.
(2)根据力和瞬时速度方向的夹角判断,
向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零.
(3)根据质点或系统能量是否变化,,
或系统内各质点间彼此有能量的转移或转化,则必定有力做功.
把握各种力做功的特点,会使功的计算变得简单
(1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关.
(2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;
对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械
能守恒、功能关系等.
(3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做
,、
方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即
W=F·l.
合力的功
(1)W总=F合lcosα,α是F合与位移l的夹角;
(2)W总=W1+W2+W3+,为各个分力功的代数和;
(3)根据动能定理由物体动能变化量求解:W总=ΔEk.
变力做功的求解方法
(1)用动能定理或功能关系求解.
(2)将变力的功转化为恒力的功.
①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如
滑动摩擦力、空气阻力做功等;
②当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功.
二、功率

(1)P=,P为时间t内的平均功率.
(2)P=Fvcosα
:机械正常工作时输出的最大功率,一般在机械的铭牌上标明.
:机械实际工作时输出的功率,要小于等于额定功率.
方式
过程
恒定功率启动
恒定加速度启动
运动规律
加速度逐渐减小的变加速直线运动
(对应下图的OA段),以vm匀速直
线运动(对应下图中的AB段)
以加速度a做匀加速直线运动(对应下
图中的OA段),匀加速运动能维持的时
间t0=,以vm匀速直线运动,对应
下图中的BC段
v­t图象
三、动能
::Ek=mv2
:焦耳(J),1J=1N·m=1kg·m2/:动能是标量,只有正值.
四、动能定理
:所有外力对物体做的总功等于物体动能的变化量,这个结论叫做动能定理.
:w=Ek2-Ek1变化的大小由外力的总功来度量.
:动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功.
、s、m、v、W、Ek等,在处理含有上述物理量的力学问题时,

(1),动能定理一般只应用于单个物体,如果是系统,那么系统
内的物体间不能有相对运动.
(2)对研究对象进行受力分析.(研究对象以外的物体施于研究对象的力都要分析,含重力)
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负).如果研究过程中物体
受力情况有变化,要分别写出该力在各个阶段做的功.
(4)写出物体的初、末动能.(5)按照动能定理列式求解.
五、机械能
:重力做功与路径无关,只与初、
WG=mgh,若物体下降,则重力做正功;若物体升高,则重力做负功(或说物体克服重力做功).

(1)概念:物体的重力势能等于物体的重力和高度的乘积.(2)表达式:Ep=mgh。
(3)重力势能是标量,、,其重力势能为负,
在参考平面以上,其重力势能为正.
六、机械能守恒定律
:在只有重力(或弹簧的弹力)做功的情况下,动能和势能发生相互转化,但总量保持不
变,这个结论叫做机械能守恒定律.
:
(1)只有重力或系统内弹力做功.(2)受其他外力但其他外力不做功或做功的代数和为零.
:
(1)Ek+Ep=Ek′+Ep′,表示系统初状态机械能的总和与末状态机械能的总和相等.
(2)ΔEk=-ΔEp,表示系统(或物体)机械能守恒时,系统减少(或增加)的重力势能等于系统增加(或
减少)的动能,在分析重力势能的增加量或减少量时,可不选参考平面.
(3)ΔEA增=ΔEB减,表示若系统由A、B两部分组成,则A部分物体机械能的增加量与B部分物
体机械能的减少量相等.
:
(1)利用机械能的定义判断(直接判断):若物体在水平面上匀速运动,其动能、势能均不变,机械
,其动能不变,重力势能减少,其机械能减少.
(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功,机械能守恒.
(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.
七、功能关系
=Ek2-Ek1,即动能定理.
=-ΔEp=Ep1-Ep2,重力做多少正功,重力势能减少
多少;重力做多少负功,重力势能增加多少.
=-ΔEp=Ep1-Ep2,弹力做多少正功,弹性
势能减少多少;弹力做多少负功,弹性势能增加多少.
,即W=ΔE.
:Q=Wf=f·s相
八、能量转化和守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转
移到另一个物体,而在转化和转移的过程中,能量的总量保持不变.
第三章万有引力
一、万有引力定律
:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成
正比,跟它们的距离的平方成反比.
:F=G,其中G=×10-11N·m2/kg2,称为引力常量.
:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本
身的大小时,公式也可近似使用,,r是两球心
间的距离.
二、万有引力定律的应用
(卫星)运动问题的基本思路
(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:
G=m=mω2r=m2r.
(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即
mg=G,gR2=GM.

通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即
G=mr,得出天体质量M=.
(1)若已知天体的半径R,则天体的密度
ρ===
(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=,可见,
只要测出卫星环绕天体表面运动的周期,就可求得天体的密度.

(1)研究人造卫星的基本方法
把卫星的运动看成匀速圆周运动,其所需的向心力由万有引力提供.
G=m=mrω2=mr=ma向.
(2)卫星的线速度、角速度、周期与半径的关系
①由G=m得v=,故r越大,v越小.
②由G=mrω2得ω=,故r越大,ω越小.
③由G=mr得T=,故r越大,T越大.
(3)人造卫星的超重与失重
①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速
度方向均向上,因而都是超重状态.
②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,
下凡是与重力有关的力学现象都会停止发生.
(4)三种宇宙速度
①第一宇宙速度(环绕速度)v1=.
这是卫星绕地球做圆周运动的最大速度,≤v<,
物体绕地球运行.
②第二宇宙速度(脱离速度)v2=。
≤v<,物体绕太阳运行.
③第三宇宙速度(逃逸速度)v3=
v≥,物体将脱离太阳系在宇宙空间运行.

(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v===,是
所有卫星的最大绕行速度;运行周期T=85min,是所有卫星的最小周期;向心加速度a=g=
是所有卫星的最大加速度。
(2)地球同步卫星的五个“一定”
①周期一定T=24h.②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定⑤向心加速度(a)一定。
第五章经典力学与物理学的革命
一、经典力学的成就与局限性
经典力学适用于宏观低速运动的物体的研究。
在高速运动时物体的质量随着速度的增加而增大。
量子力学能够正确的描述微观粒子运动的规律。
二、经典时空观与相对论时空观

绝对的真实的数学时间,就其本质而言,是永远均匀的流逝,与任何外界无关。绝对空间就其本质而言是与任何外界事物无关的,它从不运动,并且永远不变。这就是经典力学的时空观,也称为绝对时空观。
经典力学的几个具体结论
①同时的绝对性。②时间间隔的绝对性。③空间距离的绝对性。

狭义相对论的两条基本假设
①相对性原理。②光速不变原理。

①“同时”的相对性。②运动的时钟变慢。③运动的尺子缩短。④物体质量随速度的增加而增大。
三、量子化现象

黑体辐射是指黑体发出的电磁辐射。
普朗克假说:物质发射(或吸收)能量时,能量不是连续的,而是一份一份地进行的,每一份就
是一个最小的能量单位,这个不可再分的最小的能量单位称为“能量子”。
在微观领域中能量的不连续变化,即只能取分立值的现象,叫做能量的量子化。

当紫外线这一类波长较短的光照射金属表面时,金属便有电子逸出,这种现象称为光电效应。从金属表面逸出的电子称为光电子。
光电效应现象表明,光具有粒子性。

光既具有波动性又具有粒子性,也就是光具有波粒二象性。