文档介绍:该【高中数学-1知识点 】是由【莫比乌斯】上传分享,文档一共【6】页,该文档可以免费在线阅读,需要了解更多关于【高中数学-1知识点 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。高二数学选修1-1知识点
第一章
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.
假命题:判断为假的语句.
2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,,另一个称为原命题的逆命题.
若原命题为“若,则”,它的逆命题为“若,则”.
4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,,另一个称为原命题的否命题.
若原命题为“若,则”,则它的否命题为“若,则”.
5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,,另一个称为原命题的逆否命题.
若原命题为“若,则”,则它的逆否命题为“若,则”.
6、四种命题的真假性:
原命题
逆命题
否命题
逆否命题
真
真
真
真
真
假
假
真
假
真
真
真
假
假
假
假
四种命题的真假性之间的关系:
两个命题互为逆否命题,它们有相同的真假性;
两个命题为互逆命题或互否命题,它们的真假性没有关系.
7、若,则是的充分条件,是的必要条件.
若,则是的充要条件(充分必要条件).
8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作.
当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题.
用联结词“或”把命题和命题联结起来,得到一个新命题,记作.
当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题.
对一个命题全盘否定,得到一个新命题,记作.
若是真命题,则必是假命题;若是假命题,则必是真命题.
9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.
含有全称量词的命题称为全称命题.
全称命题“对中任意一个,有成立”,记作“,”.
短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.
含有存在量词的命题称为特称命题.
特称命题“存在中的一个,使成立”,记作“,”.
10、全称命题:,,它的否定:,.全称命题的否定
是特称命题.
第二章
11、平面内与两个定点,的距离之和等于常数(大于),两焦点的距离称为椭圆的焦距.
12、椭圆的几何性质:
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
且
且
顶点
、
、
、
、
轴长
短轴的长长轴的长
焦点
、
、
焦距
对称性
关于轴、轴、原点对称
离心率
准线方程
13、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则.
14、平面内与两个定点,的距离之差的绝对值等于常数(小于),两焦点的距离称为双曲线的焦距.
15、双曲线的几何性质:
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
或,
或,
顶点
、
、
轴长
虚轴的长实轴的长
焦点
、
、
焦距
对称性
关于轴、轴对称,关于原点中心对称
离心率
准线方程
渐近线方程
16、实轴和虚轴等长的双曲线称为等轴双曲线.
17、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则.
18、,定直线称为抛物线的准线.
19、抛物线的几何性质:
标准方程
图形
顶点
对称轴
轴
轴
焦点
准线方程
离心率
范围
20、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.
21、焦半径公式:
若点在抛物线上,焦点为,则;
若点在抛物线上,焦点为,则;
若点在抛物线上,焦点为,则;
若点在抛物线上,焦点为,则.
第三章
22、若某个问题中的函数关系用表示,问题中的变化率用式子
表示,则式子称为函数从到的平均变化率.
23、函数在处的瞬时变化率是,则称它为函数
在处的导数,记作或,即
.
24、,,则说明斜率不存在,切线的方程为.
25、若当变化时,是的函数,则称它为的导函数(导数),记作或,即.
26、基本初等函数的导数公式:
若,则;若,则;
若,则;若,则;
若,则;若,则;
若,则;若,则.
27、导数运算法则:
;
;
.
28、对于两个函数和,若通过变量,可以表示成的函数,则称这个函数为函数和的复合函数,记作.
复合函数的导数与函数,的导数间的关系是
.
29、在某个区间内,若,则函数在这个区间内单调递增;若
,则函数在这个区间内单调递减.
30、点称为函数的极小值点,称为函数的极小值;点称为函数的极大值点,、极大值点统称为极值点,极大值和极小值统称为极值.
31、求函数的极值的方法是::
如果在附近的左侧,右侧,那么是极大值;
如果在附近的左侧,右侧,那么是极小值.
32、求函数在上的最大值与最小值的步骤是:
求函数在内的极值;
将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.