1 / 38
文档名称:

细胞生物学知识点(2).doc

格式:doc   大小:1,794KB   页数:38页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

细胞生物学知识点(2).doc

上传人:莫比乌斯 2022/10/27 文件大小:1.75 MB

下载得到文件列表

细胞生物学知识点(2).doc

相关文档

文档介绍

文档介绍:该【细胞生物学知识点(2) 】是由【莫比乌斯】上传分享,文档一共【38】页,该文档可以免费在线阅读,需要了解更多关于【细胞生物学知识点(2) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。细胞生物学知识点
绪论
细胞生物学研究的内容和现状
细胞生物学是现代生命科学的重要基础学科
什么是细胞生物学?
细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。核心问题是将遗传与发育在细胞水平上结合起来。
二、细胞生物学的主要研究内容
¿1、细胞核、染色体以及基因表达的研究
¿2、生物膜与细胞器的研究
¿3、细胞骨架体系的研究
¿4、细胞增殖及其调控
¿5、细胞分化及其调控
¿6、细胞的衰老与凋亡
¿7、细胞的起源与进化
¿8、细胞工程
三、细胞生物学的发展趋势
从分子水平→细胞水平,相互渗透交融
从细胞结构功能研究为主→细胞重大生命活动为主
分析→综合
功能基因组学研究是细胞生物学研究的基础与归宿
(应用)由基因治疗→细胞治疗
四、当前细胞生物学研究的重点领域
染色体DNA与蛋白质相互作用关系
细胞增殖、分化、衰老及凋亡的调控及其相互关系
细胞信号转导
五、最近几年诺贝尔奖与细胞生物学(2000-2010)
2000:神经系统中的信号传递
2001:控制细胞周期的关键物质
2002:细胞凋亡调节机制
2003:细胞膜水通道及离子通道结构和机理
2004:泛素调节的蛋白质降解系统
2005:幽门螺旋杆菌
2006:RNAi
2007:基因敲除小鼠
2008:绿色荧光蛋白
2009:端粒和端粒酶保护染色体的机理
2010:试管受精技术
,美国人Leland Hartwell、英国人PaulNurse、Timothy Hunt因对细胞周期调控机理的研究而获诺贝尔生理医学奖。
,英国人悉尼·布雷诺尔、美国人罗伯特·霍维茨和英国人约翰·苏尔斯顿,因在器官发育的遗传调控和细胞程序性死亡方面的研究获诺贝尔诺贝尔生理学或医学奖。
,美国科学家彼得·阿格雷和罗德里克·麦金农,分别因对细胞膜水通道,离子通道结构和机理研究而获诺贝尔化学奖。
,,他们发现气味受体和嗅觉系统的组成。
,他们发现幽门螺杆菌及其在胃炎和胃溃疡方面的作用。

美国人ElizabethBlackburn、CarolGreider、JackSzostak获诺贝尔医学和生理学奖,他们发现了端粒和端粒酶保护染色体的机理。
2010年度诺贝尔生理学或医学奖在瑞典首都斯德哥尔摩揭晓。被誉为“试管婴儿之父”的英国科学家罗伯特·爱德华兹(),因“在试管受精技术方面的发展”而被授予该奖项。
第二节细胞学与细胞生物学发展简史
细胞的发现
细胞学说的建立其意义
细胞生物学的研究内容分三个层次:
1)显微水平,光学显微镜下可见的结构。
2)超微水平,电子显微镜下可见的结构。
3)分子水平,细胞结构的分子组成,及其在生命活动中的作用。
细胞生物学经历了四个主要发展阶段:
1)1665-1830s,细胞发现,显微生物学。
2)1830s-1930s,细胞学说,Cytology诞生
3)1930s-1970s,电镜技术应用,Cytology发展为细胞生物学。
4)1970s以来,分子细胞生物学时代。
一、细胞的发现
显微镜之于生物学,犹如望远镜之于天文学,细胞生物学的变革无不和显微技术的改进息息相关。
,放大倍数不超过10倍。
1665年英国人RobertHooke出版《显微图谱》。观察了软木,并首次用cells来描述“细胞”
。他观察过植物、原生动物、水、鲑鱼的红细胞、牙垢中的细菌、唾液、血液、精液等等。
1830s消色差显微镜出现,人们才对细胞的结构和功能有了新的认识。

。这些工作对于细胞学说的诞生具有重要意义。
细胞学说的建立及其意义
1838年Schleiden发表“植物发生论”,认为无论怎样复杂的植物都由细胞构成。但他以free-cellformation理论来解释细胞形成。
Schwann提出了“细胞学说”(CellTheory);1939年发表了“关于动植物结构和生长一致性的显微研究”。
Schwann提出:
有机体是由细胞构成的;细胞是构成有机体的基本单位。但他也采用了的Schleiden细胞形成理论。
“一切细胞来源于细胞”(omniscellulaecellula)的著名论断;进一步完善了细胞学说。
细胞学说是19世纪的重大发现之一,其基本内容有三条:
,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;
,既有它“自己的”生命,又对与其它细胞共同组成的整体的生命有所助益;

三、细胞学发展的经典时期
19世纪30年代至20世纪初,细胞学得到了蓬勃的发展。其研究方法主要是显微镜下细胞形态的描述。研究的主要特点是应用生物固定和染色技术,在光学显微镜下观察细胞的形态和细胞的分裂活动。
原生质理论的提出、细胞分裂活动的研究以及重要细胞器的发现等,构成了细胞学发展的经典时期。
四、实验细胞学与细胞学的分支及其发展
从20世纪初到中叶,为实验细胞学的发展时期。这一时期细胞学研究的特点是由对细胞形态结构的观察,深入到对其生理功能、生物化学、遗传发育机理的研究。
,人类视野进入超微领域。
1939年Siemens公司生产商品电镜。
1940-50s用电镜观察了各类细胞超微结构。并结合超速离心、电泳、无细胞体系等分析技术研究这些结构的功能。Cytology发展为CellBiology。
五、细胞生物学学科的形成和发展
从20世纪60年代起,细胞学发展成为细胞生物学。细胞生物学是随着分子生物学的发展而兴起的。
,但未引起重视。
1941年Beatle和Tatum提出了“一个基因一个酶”的理论。
,。
-衍射照片。1953年她认为DNA是一种对称结构,可能是螺旋。
1953年,。与Wilkins分享1962年诺贝尔生理学与医学奖。
1958年Crick提出分子遗传的“中心法则”。
1961-1964年Nirenberg等破译遗传密码。
,。
,并在大肠杆菌中表达。
一系列技术和理论的提出,使细胞生物学与分子生物学的结合越来越紧密。
20世纪80年代以来,细胞生物学的主要发展方向是细胞的分子生物学,即在分子水平上探索细胞的基本生命规律,把细胞看成是物质、能量、信息过程的结合,并在分子水平上深入探索其生命活动的规律,深刻性与综合性是细胞生物学进一步发展的特点。
1983年,,于1993年获诺贝尔化学奖。
1990年,美国国会正式批准的“人类基因组计划”(HumanGenomeProject)。
我国于1993年加入该计划,承担其中1%的任务,即人类3号染色体短臂上约30Mb的测序任务。
2000年6月27日科学家公布完***类基因组草图。
2月12日联合公布人类基因组图谱及分析结果。初步分析表明,´108bp组成,共有3万~4万个基因。
同年,美国国立卫生研究院给一名患有先天性重度联合免疫缺陷病的4岁女孩实施了首例基因治疗。这种疾病因腺苷脱氨酶(ADA)基因变异引起。
1996年7月5日,世界上第一只克隆羊“多利”在英国苏格兰卢斯林研究所的试验基地诞生。
目前细胞生物学研究的基本特点和趋势可归纳如下:
细胞结构功能细胞生命活动。
细胞中单一基因与蛋白基因组与蛋白质组及其在细胞生命活动中的协同作用。
细胞信号转导途径信号调控网络。
体外研究体内研究。
静态已经活细胞的动态研究。
研究为主计算生物学更多地介入并与之结合。
细胞生物学与生物学其他学科的渗透与数、理、化及纳米科学等多学科的交叉。
总的特点是从静态的分析到活细胞的动态综合,这在很大程度也反映了生命科学研究的趋势。
细胞的统一性与多样性
细胞的基本概念
一、细胞是生命活动的基本单位
二、细胞的基本共性
一、细胞是生命活动的基本单位
1、一切有机体都由细胞构成,细胞是构成有机体的基本单位.
2、细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位
3、细胞是有机体生长与发育的基础
4、细胞是遗传的基本单位。细胞具有遗传的全能性
5、没有细胞就没有完整的生命

˜(1)细胞是多层次非线性的复杂结构体系
细胞具有高度复杂性和组织性
˜(2)细胞是物质(结构)、能量与信息过程精巧结合的综合体
1、细胞完成各种化学反应;
2、细胞需要和利用能量;
3、细胞参与大量机械活动;
4、细胞对刺激作出反应;
˜(3)细胞是高度有序的,具有自组装能力与自组织体系。
¿1、细胞能进行自我调控;
2、繁殖和传留后代;
二、细胞的基本共性

-蛋白体系的生物膜
所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。
-RNA的遗传装置
所有的细胞都有两种核酸,即DNA-与RNA,作为遗传信息复制与转录的载体。
——核糖体
一切细胞均存在合成蛋白质的基本结构体─核糖体。

原核细胞与真核细胞基本特征的比较
原核细胞与真核细胞的遗传结构装置和基因表达的比较
细胞的体积受什么因素控制?
可以从3个方面进行探讨:
1、不论细胞体积相差多大,各种细胞核的大小相差不大。
2、细胞的表面积限制了细胞的大小
(1)细胞体积相对细胞表面积呈反比关系,体积越大,表面积就越小
(2)细胞体积比表面积增大速度快
3、细胞内物质的交流运输与细胞体积有关,细胞内的物质从一端向另一端运输或扩散是有时间与空间关系的。
细胞形态结构与功能的关系
细胞的形态有球形、星形、扁平、立方形、长柱形、梭形等。
细胞形态结构与功能的相关性与一致性是很多细胞的共同特点,在分化程度较高的细胞中更为明显,这是生物漫长进化过程的产物。
植物细胞和动物细胞的比较
第四章细胞质膜
Plasmmembrane
细胞质膜(plasmmembrane)曾称细胞膜(cellmembrane),是指围绕在细胞最外层,由脂质(lipid)和蛋白质(protein)组成的生物膜。
质膜不仅是细胞结构的边界,使细胞具有一个相对稳定的内环境,同时在细胞与环境之间的物质运输、能量转换及信息传递过程中也起着重要作用。
细胞内的膜与细胞质膜统称为生物膜(biomembrane)。
它是围绕细胞的保护层,一层薄而透明的油层,允许食物,氧气和水份进入细胞,废物排出细胞。
第一节细胞质膜的结构模型
生物膜的结构模型
膜脂
膜蛋白
一、生物膜的结构模型
单位膜模型(Unitmembranemodel)
用超薄切片技术获得了清晰的细胞膜照片,显示暗-明-暗三层结构,,。
“生物膜的流动镶嵌模型”
这种模型认为细胞膜是由流动的脂双分层子和嵌在其中的蛋白质构成的。
该模型主要强调:1)膜的流动性,膜蛋白和膜脂均可侧向运动;2)膜蛋白分布的不对称性,有的镶在膜表面,有的嵌入或横跨脂双分子层。
(1997):lipidraftsmodel(脂筏模型)
生物膜结构的特征
具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质。磷脂双分子层是组成生物膜的基本结构成分,尚未发现膜结构中起组织作用的蛋白;
u蛋白分子以不同方式镶嵌在脂双层分子中或结合在其表面,膜蛋白是赋予生物膜功能的主要决定者;
生物膜可看成是在双层脂分子中嵌有蛋白质的二维溶液。
二、膜的化学组成
MembraneLipid(膜脂)
Phospholipids(phosphoglycerides,磷脂)
Glycolipid(糖脂类)
Cholesterol(胆固醇)
MembraneProtein(膜蛋白)
Integralproteins(膜内在蛋白)
ChannelProteins(通道蛋白)
CarrierProteins(载体蛋白)
Peripheralproteins(膜外周蛋白)
Lipid–anchoredproteins(脂锚定蛋白)
MembraneCarbohydrates(膜碳水化合物)
膜脂(MembraneLipid):
膜脂主要包括磷脂、糖脂和胆固醇三种类型
磷脂(phospholipids):膜脂的基本成分(50%以上)
²分为二类:甘油磷脂(phosphoglycerides)和鞘磷脂(sphingolipids)
²主要特征:
①具有一个极性头部和两个非极性的尾部(心磷脂除外);
②脂肪酸碳链碳原子为偶数,大多数由16,18或20个组成;
③饱和脂肪酸(如软脂酸)及不饱和脂肪酸(如油酸);
糖脂(glycolipids):
糖脂普遍存在于原核和真核细胞的质膜上(5%以下),神经细胞膜上糖脂含量较高;
胆固醇(Cholesterol)和中性脂质:
存在于真核细胞膜上,其含量不超过膜脂的1/3。细菌质膜不含有胆固醇,但某些细菌的膜脂中含有甘油脂等中性脂。
Features(特征):
Foundinanimals,Smaller,Lessamphipathic
Functions(功能):
维持膜的流动性,增加膜的稳定性
如没有胆固醇,膜很容易分开
smallhydrophilic(亲水性)hydroxylgroup(羟基)towardthemembranesurface亲水的羟基对着膜表面
theremainderofthemoleculeembeddedinthelipidbilayer其余的部分埋在脂双层间
TheNatureoftheLipid
膜脂的基本性质是***物质,能够自我装配成双层结构或自我封闭成球状。
膜脂的功能
◆构成膜的基本骨架,去除膜脂,则使膜解体;
◆是膜蛋白的溶剂,一些蛋白通过疏水端同膜脂作用,使蛋白镶嵌在膜上,得以执行特殊的功能;
◆膜脂为某些膜蛋白(酶)维持构象、表现活性提供环境,一般膜脂本身不参与反应(细菌的膜脂参与反应);
◆膜上有很多酶的活性依赖于膜脂的存在。有些膜蛋白只有在特异的磷脂头部基团存在时才有功能。

Fourkindsofmovement:
沿膜平面的侧向运动(Lateraldiffusionbyexchangingplaces):基本运动方式,其扩散系数为10-8cm2/s;
脂分子围绕轴心的自旋运动(Rotationaboutitslongaxis);
脂分子尾部的摆动(Wave);
双层脂分子之间的翻转运动(Transversediffusion,or“flip-flop”fromonemonolayertotheother):发生频率还不到脂分子侧向交换频率的10-10。但在内质网膜上,新合成的磷脂分子翻转运动发生频率很高。

脂质体是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜。
脂质体的应用:
(1)研究膜脂与膜蛋白及其生物学性质;
(2)脂质体中裹入DNA可用于基因转移;
(3)在临床治疗中,脂质体作为药物或酶等载体
(二)膜蛋白(MembraneProtein)
The“Mosaic”PartoftheModel
Functions:carryoutmostmembranefunctions
Transportingparticularnutrients运输营养物质
Metabolites代谢Receptors受体Enzymes酶
Ionsacrossthelipidbilayer离子通过脂双层
Anchorthemembranetomacromolecules将膜与大分子物质连接
Content:about50%ofthemassofmostplasmamembranesinanimals在动物细胞中占50%含量
Classification:accordingtheirrelationshiptolipidbilayer按照它们和脂双层的关系划分

根据膜蛋白分离的难易程度及其与脂分子的进化方式分为:
u外周膜蛋白(peripheralmembraneprotein);
分布于细胞膜的内外表面,主要分布在细胞膜的内表面,约占膜蛋白总量的20%~30%。
为水溶性蛋白,靠离子键或其它弱键与膜表面的蛋白质分子或脂分子结合
易分离
整合膜蛋白(integralprotein)又称膜内在蛋白.
(1)全部或部分插入细胞膜内,直接与脂双层的疏水区域相互作用。
(2)两亲性(Amphipathic)
亲水性(Hydrophilic):formingfunctionaldomainsoutsideofthebilayer
疏水性(Hydrophobic):anchoringtheminthebilayer
(3)水不溶性蛋白,与膜结合紧密,需用去垢剂使膜崩解后才可分离。
脂锚定蛋白(lipidanchoredprotein)
又称脂连接蛋白(lipid-linkedproteins),同脂的结合有两种方式:
●一种方式是通过一个糖分子间接同脂双层中的脂结合;
●一种是蛋白质直接与脂双层中的脂结合。

(1)膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。
(2)跨膜结构域两端携带正电荷的氨基酸残基与磷脂分子带负电的极性头形成离子键,或带负电的氨基酸残基通过Ca2+、Mg2+等阳离子与带负电的磷脂极性头相互作用。
u(3)某些膜蛋白在细胞质基质一侧的半胱氨酸残基上共价结合脂肪酸分子,插入脂双层之间,进一步加强膜蛋白与脂双层的结合力,还有少数蛋白与糖脂共价结合。
(detergents)
去垢剂是一端亲水一端疏水的***小分子,是分离与研究膜蛋白的常用试剂。
离子型去垢剂(theionicdetergentSDS)和非离子型去垢剂(thenonionicdetergentTritonX-100)
膜蛋白的研究方法
◆用去垢剂分离小的跨膜蛋白,是膜蛋白研究的重要手段:
■当它们与膜蛋白作用时,其疏水端与膜蛋白的疏水区域相结合,极性端指向水中,形成溶于水的去垢剂-膜蛋白复合物,从而使膜蛋白在水中溶解、变性、沉淀。
■当去除去垢剂并加入磷脂后,可使膜蛋白复性并恢复功能。
■有人用这种方法研究了膜中Na+-K+-ATP酶的功能
钠钾ATP酶功能的研究图
膜碳水化合物(MembraneCarbohydrates)
与脂类和蛋白质共价结合在脂双层的外表面
糖蛋白(Glycoproteins):haveshort,branchedcarbohydratesforinteractionswithothercellsandstructuresoutsidethecell.
糖脂(Glycolipids):havelargercarbohydratechainsthatmaybecell-to-cellrecognitionsites.
Functions
与其它细胞和结构相互作用
细胞与细胞之间的识别位点
稳定细胞膜结构
识别激素和分子
第二节生物膜基本特征与功能
(Thepropertiesandfunctionsofmembranes)
膜的流动性
膜的不对称性
细胞质膜的基本功能
膜的流动性(Fluidity)
(Membranelipidsfluidity)
影响膜流动性的因素(Thefactorsaffectonmembranefluidity):
1)脂肪酸链长度和不饱和程度
膜脂的流动性主要由脂分子本身的性质决定的,脂肪酸链越短,不饱和程度越高,膜脂的流动性越大。
2)温度(Temperature):
温度对膜脂的运动有明显的影响。在细菌和动物细胞中常通过增加不饱和脂肪酸的含量来调节膜脂的相变温度以维持膜脂的流动性。

最近更新