1 / 9
文档名称:

高数二知识点.doc

格式:doc   大小:621KB   页数:9页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高数二知识点.doc

上传人:莫比乌斯 2022/10/27 文件大小:621 KB

下载得到文件列表

高数二知识点.doc

文档介绍

文档介绍:该【高数二知识点 】是由【莫比乌斯】上传分享,文档一共【9】页,该文档可以免费在线阅读,需要了解更多关于【高数二知识点 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。专科起点升本科高等数学(二)知识点汇总
常用知识点:
一、常见函数的定义域总结如下:
(1)一般形式的定义域:x∈R
(2)分式形式的定义域:x≠0
(3)根式的形式定义域:x≥0
(4)对数形式的定义域:x>0
二、函数的性质
1、函数的单调性
当时,恒有,在所在的区间上是增加的。
当时,恒有,在所在的区间上是减少的。
2、函数的奇偶性
定义:设函数的定义区间关于坐标原点对称(即若,则有)
(1)偶函数——,恒有。
(2)奇函数——,恒有。
三、基本初等函数
1、常数函数:,定义域是,图形是一条平行于轴的直线。
2、幂函数:,(是常数)。它的定义域随着的不同而不同。图形过原点。
3、指数函数
定义:,(是常数且,).图形过(0,1)点。
4、对数函数
定义:,(是常数且,)。图形过(1,0)点。
5、三角函数
(1)正弦函数:
,,。
(2)余弦函数:.
,,。
(3)正切函数:.
,,.
(4)余切函数:.
,,.
5、反三角函数
(1)反正弦函数:,,。
(2)反余弦函数:,,。
(3)反正切函数:,,。
(4)反余切函数:,,。
极限
一、求极限的方法
1、代入法
代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。
2、传统求极限的方法
(1)利用极限的四则运算法则求极限。
(2)利用等价无穷小量代换求极限。
(3)利用两个重要极限求极限。
(4)利用罗比达法则就极限。
二、函数极限的四则运算法则
设,,则
(1)
(2).
推论
(a),(为常数)。
(b)
(3),().
(4)设为多项式,则
(5)设均为多项式,且,则
三、等价无穷小
常用的等价无穷小量代换有:当时,,,,,,,。
对这些等价无穷小量的代换,应该更深一层地理解为:当时,,其余类似。
四、两个重要极限
重要极限I。
它可以用下面更直观的结构式表示:
重要极限II。
其结构可以表示为:
八、洛必达(L’Hospital)法则
“”型和“”型不定式,存在有(或)。
一元函数微分学
一、导数的定义
设函数在点的某一邻域内有定义,当自变量在处取得增量(点仍在该邻域内)时,相应地函数取得增量。如果当时,函数的增量与自变量的增量之比的极限
==注意两个符号和在题目中可能换成其他的符号表示。
二、求导公式
1、基本初等函数的导数公式
(1)(为常数)
(2)(为任意常数)
(3)特殊情况
(4),
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
2、导数的四则运算公式
(1)
(2)
(3)(为常数)
(4)
3、复合函数求导公式:设,,且及都可导,则复合函数的导数为。
三、导数的应用
1、函数的单调性
则在内严格单调增加。
则在内严格单调减少。
2、函数的极值
的点——函数的驻点。设为
(1)若时,;时,,则为的极大值点。
(2)若时,;时,,则为的极小值点。
(3)如果在的两侧的符号相同,那么不是极值点。
3、曲线的凹凸性
,则曲线在内是凹的。
,则曲线在内是凸的。
4、曲线的拐点
(1)当在的左、右两侧异号时,点为曲线的拐点,此时.
(2)当在的左、右两侧同号时,点不为曲线的拐点。
5、函数的最大值与最小值
极值和端点的函数值中最大和最小的就是最大值和最小值。
四、微分公式
,求微分就是求导数。
一元函数积分学
一、不定积分
1、定义,不定积分是求导的逆运算,最后的结果是函数+C的表达形式。公式可以用求导公式来记忆。
2、不定积分的性质
(1)或
(2)或
(3)。
(4)(为常数且)。
2、基本积分公式(要求熟练记忆)
(1)
(2).
(3).
(4)
(5)
(6)
(7)
(8).
(9).
(10).
(11).
3、第一类换元积分法
对不定微分,将被积表达式凑成
,这是关键的一步。
常用的凑微分的公式有:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
4、分部积分法
二、定积分公式
1、(牛顿—莱布尼茨公式)如果是连续函数在区间上的任意一个原函数,则有。
2、
y
aobx
计算平面图形的面积
如果某平面图形是由两条连续曲线及两条直线和所围成的(其中是下面的曲线,是上面的曲线),则其面积可由下式求出:
oaxx+dxbx
y
3、计算旋转体的体积
设某立体是由连续曲线和直线及轴所围平面图形绕轴旋转一周所形成的旋转体,如图所示。则该旋转体的体积可由下式求出:
多元函数微分学
偏导数,对某个变量求导,把其他变量看做常数。
2、全微分公式:。
3、复合函数的偏导数——利用函数结构图
如果、在点处存在连续的偏导数,,,,且在对应于的点处,函数存在连续的偏导数,,则复合函数在点处存在对及的连续偏导数,且
,。
4、隐函数的导数
对于方程所确定的隐函数,可以由下列公式求出对的导数:
,
2、隐函数的偏导数
对于由方程所确定的隐函数,可用下列公式求偏导数:
,,
5、二元函数的极值
设函数在点的某邻域内有一阶和二阶连续偏导数,且
,又设,,,
则:
(1)当时,函数在点处取得极值,且当
时有极大值,当时有极小值。
(2)当时,函数在点处无极值。
(3)当时,函数在点处是否有极值不能确定,要用其它方法另作讨论。
概率常识
数学期望

2、方差

方差的算术平方根称为均方差或标准差,记为,即

最近更新

2025年注册监理工程师考试合同管理真题及答案.. 59页

2025年长江艺术工程职业学院单招职业技能测试.. 64页

2025年长沙幼儿师范高等专科学校单招职业适应.. 60页

浅析供应链管理中的物流创新 6页

2025年长沙电力职业技术学院单招职业适应性测.. 64页

2025年江苏旅游形象策划案例 23页

河南重点项目-固始食品包装产品生产项目可行性.. 12页

2025年阜阳科技职业学院单招职业技能测试题库.. 60页

2025年阳光学院单招职业适应性测试题库及答案.. 61页

2025年阳泉师范高等专科学校单招职业适应性测.. 61页

2025年毕业班教师参考发言稿 3页

2025年陕西交通职业技术学院单招职业倾向性测.. 63页

2025年陕西国际商贸学院单招职业适应性测试题.. 62页

2025年检讨书正确格式范文 10页

2025年陕西工商职业学院单招职业适应性测试题.. 63页

2025年陕西服装工程学院单招职业技能测试题库.. 62页

2025年陕西机电职业技术学院单招职业适应性测.. 61页

4D电影院装修合同模板3篇 59页

水泥稳定碎石基层施工技术方案 24页

2025年度高端安防设施采购与运输管理协议3篇 53页

2025年度高空作业安全防护与培训服务协议3篇 51页

2025年陕西能源职业技术学院单招职业技能测试.. 63页

2025年陕西航天职工大学单招职业适应性测试题.. 62页

2025年陕西艺术职业学院单招职业技能测试题库.. 60页

2025年服务行业激励口号大全 3页

2025年度能源设施安全保卫与环保合同范本3篇 59页

2024网格员考试题库含答案 123页

幼儿园生活活动中的师幼互动研究 5页

有关国际经济学论文 8页

大学英语四级考试高频词汇1500(打印版)[1] 10页