文档介绍:特别说明:
本文中二叉树结构定义为:
struct Node {
Node* left;
Node* right;
int data;
};
定义:空二叉树的高度为-1,只有根节点的二叉树高度为0,根节点在0层,深度为0。
求二叉树中相距最远的两个节点之间的距离
两个节点的距离为两个节点间最短路径的长度。
求两节点的最远距离,实际就是求二叉树的直径。假设相距最远的两个节点分别为A、B,它们的最近共同父节点(允许一个节点是其自身的父节点)为C,则A到B的距离= A到C的距离+ B到C的距离。
节点A、B分别在C的左右子树下(假设节点C的左右两子树均包括节点C),不妨假设A在C的左子树上,由假设“A到B的距离最大”,先固定B点不动(即B到C的距离不变),根据上面的公式,可得A到C的距离最大,即点A是C左子树下距离C最远的点,即:
A到C的距离= C的左子树的高度。同理,  B到C的距离= C的右子树的高度。
因此,本问题可以转化为:“二叉树每个节点的左右子树高度和的最大值”。
判断二叉树是否平衡二叉树
根据平衡二叉树的定义:每个结点的左右子树的高度差小等于1,只须在计算二叉树高度时,同时判断左右子树的高度差即可。
二叉树的广度遍历(某层)
若需要对同一层的节点数据进行一些特殊操作(比如:打印完一层后换行、只打印某一层),可以记录某一层的最后一个节点,当遍历完该节点时(此时,队列的中的最后一个元素恰好就是下一层的最后一个节点),再进行这些特殊操作。
指定二叉树,给定两节点求其最近共同父节点
遍历二叉树时,只有先访问给定两节点A、B后,才可能确定其最近共同父节点C,因而采用后序遍历。
可以统计任一节点的左右子树“是否包含A、B中的某一个”(也可以直接统计“包含了几个A、B”)。当后序遍历访问到某个节点D时,可得到三条信息:节点D是否是A、B两节点之一、其左子树是否包含A、B两节点之一、其右子树是否包含A、B两节点之一。当三条信息中有两个为真时,就可以确定节点D的父节点(或节点D,如果允许一个节点是自身的父节点的话)就是节点A、B的最近共同父节点。另外,找到最近共同父节点C后应停止遍历其它节点。
上面的代码中需要特别注意的是:判断所访问时节点是否是两节点A、B时要写成
const int mid = (root == va) + (root == vb);
而不是: const int mid = (root == va) | (root == vb);
这样当va等于vb时,可以得到正确结果。
二叉树的高度
求二叉树中叶子节点的个数
交换二叉树的左右儿子
从根节点开始找到所有路径,使得路径上的节点值和为某一数值(路径不一定以叶子节点结束)
这道题要找到所有的路径,显然是用深度优先搜索(DFS)啦。但是我们发现DFS所用的栈和输出路径所用的栈应该不是一个栈,栈中的数据是相反的。看看代码:注意使用的两个栈。
二叉树“弓”字形遍历
题目描述:对二叉树进行“弓”字形遍历,即第一层从左往右遍历,第二层从右往左遍历,第三层从左往右遍历.....
思路:传统的广度优先遍历,只需一个队列即可,但只能实现每层从左往右遍历。这里可以设两个栈,分别存放相邻两层的节点,先将某层节点存入一个栈,对这个栈的每个节点进行访问和出栈操作,在出栈的同时把它的孩子节点存入另一个栈,当这层的每个节点都操作完毕后,同时也实现了下一层节点在另一个栈的入栈操作。要注意的是,相邻两层的节点入栈的顺序是相反的,这样才能实现“弓”字形遍历。
在这边可以控制一个flag状态量,当栈中为空时,判断flag是否等于0,如果等于0则从左到右,否则就是从右到左
平衡二叉树(AVL树)
是一棵二叉查找树(BST),任意一棵子树,其左右子树的高度差不大于1
四种变形
LL型
RR型
LR
RL
判断二叉树是不是完全二叉树
红黑树
一般的,红黑树,满足以下性质,即只有满足以下全部性质的树,我们才称之为红黑树:
1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。
这些约束强制了红黑树的关键性质:最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。因为根据属性5所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。
因为每一个红黑树也是一个特化的二叉查找树,因此红黑树上的只读操作与普通二叉查找树上的只读操作相同。然而,在红黑树上进行插入操作和删除操作会导致不再符合红黑树的性质。恢复红黑