文档介绍:三角形“四心”向量形式的充要条件应用
知识点总结
;
若O是的重心,则故;
为的重心.
;
若O是(非直角三角形)的垂心,则
故
(或)
若O是的外心则
故
引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成,O是内心的充要条件也可以是。若O是的内心,则
A
C
B
C
C
P
故;
是的内心;
向量所在直线过的内心(是的角平分线所在直线);
范例
(一)将平面向量与三角形内心结合考查
,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的( )
(A)外心(B)内心(C)重心(D)垂心
解析:因为是向量的单位向量设与方向上的单位向量分别为, 又,则原式可化为
,由菱形的基本性质知AP平分,那么在中,AP平分,则知选B.
(二)将平面向量与三角形垂心结合考查“垂心定理”
例2. H是△ABC所在平面内任一点,点H是△ABC的垂心.
由,
同理,.故H是△ABC的垂心. (反之亦然(证略))
例3.(湖南)P是△ABC所在平面上一点,若,则P是△ABC的(D )
解析:
则所以P为的垂心. 故选D.
(三)将平面向量与三角形重心结合考查“重心定理”
例4. G是△ABC所在平面内一点,=0点G是△ABC的重心.
证明作图如右,图中
连结BE和CE,则CE=GB,BE=GCBGCE为平行四边形D是BC的中点,AD为BC边上的中线.
将代入=0,
得=0,故G是△ABC的重心.(反之亦然(证略))
例5. P是△△ABC的重心.
证明
∵G是△ABC的重心∴=0=0,即
由此可得.(反之亦然(证略))
例6 若为内一点, ,则是的(     )
                            
解析:由得,如图以OB、OC为相邻两边构作平行四边形,则,由平行四边形性质知,,同理可证其它两边上的这个性质,所以是重心,选D。
(四) 将平面向量与三角形外心结合考查
例7若为内一点,,则是的(     )
                            
解析:由向量模的定义知到的三顶点距离相等。故是的外心 ,选B。
(五)将平面向量与三角形四心结合考查
,,满足条件++=0,||=||=||=1,
求证△P1P2P3是正三角形.(《数学》第一册(下),复习参考题五B组第6题)
证明由已知+=-,两边平方得·=,
同理·=·=,
∴||=||=||=,从而△P1P2P3是正三角形.
反之,若点O是正三角形△P1P2P3的中心,则显然有++=0且||=||=||.
即O是△ABC所在平面内一点,
++=0且||=||=||点O是正△P1P2P3的中心.
△ABC中,已知Q、G、H分别是三角形的外心、重心、垂心。求证:Q、G、H三点共线,且QG:GH=1:2。
【证明】:以A为原点,AB所在的直线为x轴,建立如图所示的直角坐标系。设A(0,0)、B(x1,0)、C(x2,y2),D、E、F分别为AB、BC、AC的中点,则有:
由题设可设,
A
B(x1,0)
C(x2,y2)
y
x
H
Q
G
D
E
F
即,故Q、G、H三点共线,且QG:GH=1:2
、H分别是△ABC的外心和垂心.
求证.
证明若△ABC的垂心为H,外心为O,如图.
连BO并延长交外接圆于D,连结AD,CD.
∴,.又垂心为H,,,
∴AH∥CD,CH∥AD,
∴四边形AHCD为平行四边形,
∴,故.
著名的“欧拉定理”讲的是锐角三角形的“三心”——外心、重心、垂心的位置关系:
(1)三角形的外心、重心、垂心三点共线——“欧拉线”;
(2)三角形的重心在“欧拉线”上,且为外——垂连线的第一个三分点,即重心到垂心的距离是重心到外心距离的2倍。
“欧拉定理”的向量形式显得特别简单,可简化成如下的向量问题.
例11. 设O、G、H分别是锐角△ABC的外心、重心、垂心. 求证
证明按重心定理 G是△ABC的重心
按垂心定理由此可得.
补充练面上不共线的三点,O是三角形ABC的重心,动点P满足
= (++2),则点P一定为三角形ABC的( B )
(非重心)