文档介绍:该【高二数学重要知识点 】是由【XUJIANMIAO】上传分享,文档一共【4】页,该文档可以免费在线阅读,需要了解更多关于【高二数学重要知识点 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。高二数学重要知识点
高中数学内容,无论是在规律思维力量,还是在空间想象力量等方面,都较学校有着明显的区分和更高的要求。下面是我为大家整理的关于高二数学重要学问点,盼望对您有所关心!
高二数学学问点
常用规律用语:
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p
注:1、原命题与逆否命题等价;逆命题与否命题等价。推断命题真假时留意转化。
2、留意命题的否定与否命题的区分:命题否定形式是;“或”的否定是“且”;“且”的否定是“或”.
3、规律联结词:
⑴且(and):命题形式pq;pqpqpqp
⑵或(or):命题形式pq;真真真真假
⑶非(not):
假真假真真
假假假假真
“或命题”的真假特点是“一真即真,要假全假”;
“且命题”的真假特点是“一假即假,要真全真”;
“非命题”的真假特点是“一真一假”
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
短语“全部”在陈述中表示所述事物的全体,规律中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,规律中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。
全称命题p:;全称命题p的否定p:。
特称命题p:;特称命题p的否定p:
高二数学的学问点整理
一、映射与函数:
(1)映射的概念:(2)一一映射:(3)函数的概念:
二、函数的三要素:
相同函数的推断方法:①对应法则;②定义域(两点必需同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类争论;
②对于实际问题,在求出函数解析式后;必需求出其定义域,此时的定义域要依据实际意义来确定。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;
②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可依据函数的单调性求值域。
⑧数形结合:依据函数的几何图形,利用数型结合的方法来求值域。
高二数学学问点总结
一、直线与圆:
1、直线的倾斜角的范围是
在平面直角坐标系中,对于一条与轴相交的直线,假如把轴围着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,
⑵斜截式:直线在轴上的截距为和斜率,则直线方程为
4、直线与直线的位置关系:
(1)平行A1/A2=B1/B2留意检验(2)垂直A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:.⑵圆的一般方程:
留意能将标准方程化为一般方程
7、过圆外一点作圆的切线,肯定有两条,假如只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离 ②相切 ③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长
高二数学重要学问点