1 / 38
文档名称:

高中数学排列组合的应用-ppt课件.ppt

格式:ppt   大小:1,993KB   页数:38页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高中数学排列组合的应用-ppt课件.ppt

上传人:aluyuw1 2017/11/20 文件大小:1.95 MB

下载得到文件列表

高中数学排列组合的应用-ppt课件.ppt

文档介绍

文档介绍:排列组合的应用
一、掌握优先处理元素(位置)法
二、掌握捆绑法
三、掌握插空法
四、隔板法
五、分组分配问题:
1、是否均匀;
2、是否有组别。
学习目标:
复习引入:
1、什么叫做从n个不同元素中取出m个元素的一个排列?
从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数. 用符号表示
2、什么叫做从n个不同元素中取出m个元素的排列数?
3、排列数的两个公式是什么?
(n,m∈N*,m≤n)
组合定义:一般地说,从 n 个不同元素中,任取 m (m≤n) 个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。
组合数公式:
组合数的两个性质:(1)
(2)
例1:
(1)7位同学站成一排,共有多少种不同的排法?
分析:问题可以看作7个元素的全排列.
(2)7位同学站成两排(前3后4),共有多少种不同的排法?
分析:根据分步计数原理
(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
分析:可看作甲固定,其余全排列
(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
解法一:(特殊位置法)
第一步:从其余5位同学中找2人站排头和排尾,有种;
第二步:剩下的全排列,有种;
答:共有2400种不同的排列方法。
解法二:(特殊元素法)
第一步:将甲乙安排在除排头和排尾的5个位置中的两个位置上,有种;
第二步:其余同学全排列,有种;
答:共有2400种不同的排列方法。
解法三:(排除法)
先全排列有种,其中甲或乙站排头有种,
甲或乙站排尾的有种,甲乙分别站在排头和
排尾的有种.
答:共有2400种不同的排列方法。
优限法:
对于“在”与“不在”等类似有限制条件的排列问题,常常使用“直接法”(主要为“特殊位置法”和“特殊元素法”)或者“排除法”,.

最近更新

职业卫生与职业医学期末考试 6页

湖南科技职业学院年学期考试试卷卷 7页

普外科诊疗要求规范培训资料 31页

幼儿园保育员培训学习资料 3页

克服职业倦怠 做一名有职业幸福感的教师 2页

[职业资格类试卷]幼儿园教师资格考试综合素质.. 11页

1师资培训资料清单 1页

2022浙江省考科目 [2022年浙江省高考不限选考.. 6页

盐城市电梯日常维护保养合同正式版 8页

冷藏冷冻库的维护与保养系统方案2 6页

房地产转让合同(合同范本) 5页

带状疱疹病例讲课文档 19页

2023年中国交通银行秋季校园招聘考试真题及答.. 58页

2019年国家公务员考试《银保监会专业科目-财会.. 61页

河南省南阳市淅川县2025-2025学年四年级上学期.. 5页

河北省秦皇岛市青龙县2025-2025学年九年级上学.. 9页

选修放射性元素的衰变 39页

广东省阳江市阳西县2025-2025学年五年级上学期.. 7页

机械制图立体的视图2讲课文档 131页

机床中传感器在伺服系统中的应用 73页

急腹症许振国讲课文档 113页

七年级数学竞赛试题(附答案) 7页

行政事业单位内部控制手册模板 119页

长护险护理服务协议 5页

2023年出国留学个人研修计划书 4页

最新0#块砼浇筑技术交底 13页

浅析现代室内空间的情绪化设计 5页

全国各省份含地级市全套可编辑标色地图 PPT 41页

礼请科仪 20页

中再生资源开发有限公司年拆解280万台废旧家电.. 37页