1 / 16
文档名称:

人工智能技术在医学领域的应用与前景.docx

格式:docx   大小:419KB   页数:16页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

人工智能技术在医学领域的应用与前景.docx

上传人:neryka98 2017/12/9 文件大小:419 KB

下载得到文件列表

人工智能技术在医学领域的应用与前景.docx

文档介绍

文档介绍:人工智能技术在医学领域的应用与前景
从全局整体背景上介绍了人工智能技术与临床医学结合以后已经取得的成果,未来的发展前景和美好展望以及实际中碰到的一些核心挑战。
一、人工智能、机器学****深度学****概念
什么是“人工智能”、“机器学****深度学****这三个概念现在的媒体经常会混为一谈,使大家一头雾水。如果我们回到历史里追溯“人工智能”整体发展轨迹,就会很清晰的得到这三个术语的原本概念。
1. 人工智能概念
从40年代末到50年代初,由于计算机的发明和逐步使用,人们想象,如果有了强大的运算能力,是否可以产生一种智能的程序,从而逐渐替代一部分人的工作。这个想法掀起了“人工智能”的热潮。
那时候,计算机的计算算力虽然比传统人工有了很大提升,但依然很有限。在当时阶段,实际上更多的是“人工”智能,最好的产品叫做“专家系统”。它是由大量的专家手动编制一系列规则,形成知识库,然后由符号推理形式,阐述最后结果。这是符号学派的路径。
这条路后来很快也难以为继。由于机器是单纯的接受方,不能主动做改变自己逻辑的事情,所有的事情必须由人类专家一条一条的以规则化的方式去做,非常僵硬。而它背后的基础,谓词逻辑又是一个非常刚性的框架,因此导致能表述的现实世界问题非常有限,更多的是一些玩具应用。符号学派的热潮很快消退,到70年代几乎无人提及。
2. 机器学****的概念
符号学派的失败引出了新的想法,人们思考从另外一条路径来做。从统计角度,可以把所有的现实问题都转换成概率问题。因此,去寻找现实世界问题的解决方案就等价于寻找一个概率分布。基于这样的思路,于是有了初步的“机器学****概念阐述。因此,80年代“机器学****术语开始出现。
当时更多的是从传统的统计方法开始实践,应用最多的是朴素贝叶斯方法。其典型的应用就是垃圾邮件过滤,这是到目前为止仍最为简单有效的一种过滤方式。于是终于产出了能够实用化的一些产品。
但是,我们发现单纯从统计方法出发,可能会产生另外一些问题,因为统计模型一般都是基于具体问题设计的参数化模型,我们仍然需要去手工建模,而这些建模工作就是一个非常耗费精力的过程。
3. 深度学****的概念
从2010年起,神经网络的一个分支、即深层神经网络这一类模型,终于有人找到了能很好地训练它的方法,实现自动去做特征抽取、表达抽取的工作。从此,“深度学****这个概念就开始火了。所谓“深度学****仅仅是特指深层神经网络的一个应用。
二、机器学****的典型问题范畴
机器学****分为有监督学****无监督学****和表征学****br/>1. 有监督学****br/>概念:样本集里面的问题,需要通过人或者其他的方式给出一个标准的答案,模型所做的事情就是以后碰到相似原始数据的时候,能够尽量的贴近标准答案,越接近标准答案,模型评估效果越好。
分类:分类最终的目标变量是A、B、C这样的离散集合里具体一类。我们做肺部结节检测,发现结节后,它到底是良性还是恶性?这是一个典型的二分类问题。
回归:是指最后这个目标变量是一个连续变量。最简单的回归方法是线性回归,表达力很有限。
案例:比如临床上要分析血液里面的载脂蛋白和低密脂胆固醇这两个指标之间的关联性,那么就会套用一个回归模型来建立这样一个关系。
2. 无监督学****br/>概念:指标准答案不存在或者不易定义,我们希望通过一些更为高层、抽象的规则刻划,让机器自动去发掘原有数据中间的一些特别特征或结构。
聚类:是把原始的数据、样本,按照某种特征分离成若干相似群体。根据基因测序结果或者根据生物芯片对于突变的分析结果,在分子分型和临床表现角度,把患者按相似性进行划分,分成一个个小的类别。这些不同的类别,分子分型和临床表现上有很强的相似性,可以对这一类患者采取相似疗法,以期获得相似效果。
降维:是对于很复杂、很高维度、需要很多特征来表达的数据空间,寻找其内在的冗余性,然后把冗余的部分去除,变成一个比较低维度、好处理的形式。
案例:癫痫患者往往需要做脑电波监控。脑电信号在头部采集,头部会贴两三百个电极,每个电极收集的信号都是完全独立的,都是一个时序特征。所有信号全部采集在一起分析,未必能很好地预测癫痫患者的发病时间或症状强弱的特性。因此需要寻找所有这些电极中的冗余点在哪,是不是电极信号需要组合一下或者筛选出某些主导电极,更好地刻划关联性,更好地预测癫痫患者的发病情况?这是一个降维问题,要将原有两三百个电极采集信号,转换成只有十几维的时序信号,这些信号与目标结果由最强关联性的信号来做最后的模型。
3. 表征学****br/>概念:表征是指问题可以用不同形式来表述。有些表述形式很方便求解问题,而另一些表述形式不方便求解问题。
案例:分解质因数,如果用现有的数字体系,是一个非常难的问题,尤其是大数的分解。如果改变问题的表述方式,将数字的表示法更改,这个数字不再用固定底数