文档介绍:该【二极管反向恢复过程 】是由【读书之乐】上传分享,文档一共【3】页,该文档可以免费在线阅读,需要了解更多关于【二极管反向恢复过程 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一、二极管从正向导通到截止有一种反向恢复过程 
在上图所示的硅二极管电路中加入一种以下图所示的输入电压。在0―t1时间内,输入为+VF,二极管导通,电路中有电流流通。 
  设VD为二极管正向压降(),当VF远不小于VD时,VD可略去不计,则 
在t1时,V1忽然从+VF变为-VR。在抱负状况下 ,二极管将立刻转为截止,电路中应只有很小的反向电流。但实际状况是,二极管并不立刻截止,而是先由正向的IF变到一种很大的反向电流IR=VR/RL,这个电流维持一段时间tS后才开始逐步下降,再通过tt后 ,,这时二极管才进人反向截止状态,以下图所示。 
 
普通把二极管从正向导通转为反向截止所通过的转换过程称为反向恢复过程。其中tS称为存储时间,tt称为渡越时间,tre=ts+tt称为反向恢复时间。   由于反向恢复时间的存在,使二极管的开关速度受到限制。 
二、产生反向恢复过程的因素——电荷存储效应 
产生上述现象的因素是由于二极管外加正向电压VF时,载流子不停扩散而存储的成果。当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,并且使载流子有相称数量的存储,在P区内存储了电子,而在N区内存储了空穴 ,它们都是非平衡少数载流于,以下图所示。 
  空穴由P区扩散到N区后,并不是立刻与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,首先继续扩散,首先与电子复合消失,这样就会在LP范畴内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边沿的浓度最大,离结越远,浓度越小 。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的状况也类似,下图为二极管中存储电荷的分布。 
我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 
当输入电压忽然由+VF变为-VR时P区存储的电子和N区存储的空穴不会立刻消失,但它们将通过下列两个途径逐步减少:① 在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,以下图所示; 
②与多数载流子复合。 
在这些存储电荷消失之前,PN结仍处在正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与RL相比能够忽视,因此此时反向电流IR=(VR+VD)/RL。VD表达PN结两端的正向压降,普通 VR>>VD,即 IR=VR/RL。在这段期间,IR基本上保持不变,重要由VR和RL所决定。通过时间ts后P区和N区所存储的电荷已明显减小,势垒区逐步变宽,反向电流IR逐步减小到正常反向饱和电流的数值,通过时间tt,二极管转为截止。   
由上可知,二极管在开关转换过程中出现的反向恢复过程,实质上由于电荷存储效应引发的,反向恢复时间就是存储电荷消失所需要的时间。
二极管和普通开关的不同在于,“开”与“关”由所加电压的极性决定, 并且“开”态有微小的压降V f,“关”态有微小的电流i0。当电压由正向变为反向时, 电流并不立刻成为(- i0) , 而是在一段时间ts 内, 反向电流始终很大, 二极管并不关断。通过ts后, 反向电流才逐步变小, 再通过tf 时间, 二极管的电流才成为(- i0) , ts 称为储存时间, tf 称为下降时间。tr= ts+ tf 称为反向恢复时间, 以上过程称为反向恢复过程。这事实上是由电荷存储效应引发的, 反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速持续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短, 则二极管在正、反向都可导通, 起不到开关作用。