文档介绍:稀溶液法测定偶极矩
一、实验目的
(1)掌握溶液法测定偶极矩的主要实验技术
(2)了解偶极矩与分子电性质的关系
(3)测定正丁醇的偶极矩
二、实验原理
分子结构可以近似地看成是由电子云和分子骨架(原子核及层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。
1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是
(1)
式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;是一个矢量,其方向规定为从正到负,的数量级是10-30C·m。
通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度Pμ来衡量。Pμ与永久偶极矩μ的平方成正比,与绝对温度T成反比。
(2)
式中,k为波兹曼常数;NA为阿弗加德罗常数;T为热力学温度;μ为分子的永久偶极矩。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P诱导来衡量。显然,P诱导可分为两项,即电子极化度Pe和原子极化度Pa,因此
P诱导 = Pe + Pa (3)
如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010HZ的低频电场或静电场中,极性分子所产生的摩尔极化度P是转向极化、电子极化和原子极化的总和。
P = Pμ+ Pe +Pa (4)
介电常数实际上是在107HZ一下的频率测定的,测得的极化度为 Pμ+ Pe +Pa。若把频率提高到红外围,分子已经来不及转向,此时测得的极化度只有Pe和Pa的贡献了。所以从按介电常数计算的P中减去红外线频率围测得的极化,就等于Pμ,在实验上,若把频率提高到可见光围,则原子极化也可以忽略,则在可见光围:
Pμ =P -( Pe +Pa) ≈ P - Pe (5)
摩尔极化度的计算
摩尔极化度P与介电常数 ε 之间的关系式。
(6)
式中,M为被测物质的摩尔质量;ρ 为该物质的密度;ε 是介电常数。
但式(6)是假定分子与分子间没有相互作用而推导得到的。所以它只适用于温度不大低的气相体系,对某种物质甚至根本无法获得气相状态。因此后来就提出了用一种溶液来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中的溶质的摩尔极化度可以看作是式(6)中的P。
在稀溶液中,若不考虑极性分子间相互作用和溶剂化现象,溶剂和溶质的摩尔极化度等物理量可以被认为是具有可加性。因此,式(6)可以写成:
(7)
式中,下标1表示溶剂;下标2表示溶质;x1表示溶剂的摩尔分数;x2表示溶质的摩尔分数;表示溶剂的摩尔极化度;表示溶质的摩尔极化度。
对于稀溶液,可以假设溶液中溶剂的性质与纯溶剂相同,则
(8)
(9)
Hedestrand 首先推导出经验公式,指出在稀溶液中溶液的介电常数和密度可以表示为
(10)
(11)
因此
(12)
做ε1,2-x2图,根据式(7)由直线测得斜率a,截距ε1;作ρ1,2 -x2图,并根据式 (11)由直线测得斜率b,截距ρ1,代入式(12)得
电子极化度可以使用摩尔折光度R代替,