1 / 17
文档名称:

自水解预处理对杨木聚木糖分布的影响.docx

格式:docx   大小:34KB   页数:17页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

自水解预处理对杨木聚木糖分布的影响.docx

上传人:科技星球 2024/4/23 文件大小:34 KB

下载得到文件列表

自水解预处理对杨木聚木糖分布的影响.docx

文档介绍

文档介绍:该【自水解预处理对杨木聚木糖分布的影响 】是由【科技星球】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【自水解预处理对杨木聚木糖分布的影响 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。自水解预处理对杨木聚木糖分布的影响??耿星月刘苇侯庆喜陈威(天津科技大学天津市制浆造纸重点实验室,天津,300457)?·聚木糖分布·自水解预处理对杨木聚木糖分布的影响耿星月刘苇侯庆喜*陈威(天津科技大学天津市制浆造纸重点实验室,天津,300457)采用免疫荧光标记法结合共聚焦显微镜(CLSM)研究了自水解强度对杨木聚木糖分布的影响。结果表明,聚木糖荧光信号较均匀地分布于杨木纤维细胞壁中,随强度因子的增大细胞壁中心部位荧光信号下降逐渐增多,细胞壁边缘荧光信号下降较少,有些部位甚至会稍许增加。采用高效液相色谱(HPLC),%%;对聚木糖荧光图谱进行区域强度统计,可得出与HPLC检测法结果相同的变化趋势。自水解预处理;杨木聚木糖;免疫荧光标记法;共聚焦显微镜(*E-mail:******@tust.)由于现代社会对生物质能源需求量不断增长,生物质精炼与制浆造纸技术相结合的概念受到了人们的广泛关注。为使生物质精炼过程更具经济性,不但要有广泛适用于生物质精炼的原料,对生物质原料预处理过程的深入理解也十分必要[1]。在制浆造纸前将生物质原料进行预处理,可使原料中的半纤维素和木素等组分部分溶出,有利于后续对其高值化利用。目前关于木质纤维原料预处理方面大量的报道中[2-3],自水解有望成为一种简洁高效、对环境友好、成本又低的预处理技术[4]。植物纤维主要由纤维素、半纤维素及木素三大组分构成,另外也含有一些少量组分。半纤维素中的聚木糖降解成的低聚木糖可作为一种功能性低聚糖与饮料、食品、乳制品、保健品及药品配合使用以增加产品功能性。如在饮料中,低聚木糖以其良好的耐热、耐酸及储藏稳定性,增加了饮料的稳定性,是蔗糖的良好替代物[5]。在纤维细胞壁的形成阶段,半纤维素的合成和沉积始终与纤维素有着紧密联系,如部分半纤维素可以通过增加氢键结合吸附在纤维素的表面来提高纤维网络之间的强度[6-8]。目前,为了更有效地利用生物质原料中各组分对其进行酶水解是最常用的方法之一,而在酶水解的过程中,为了提高酶水解效率,关键是要提高纤维素酶对纤维素降解的可及性[9]。作为纤维细胞壁的重要组成部分,聚木糖和果胶质也为细胞壁中纤维素晶体的结合提供了基质,从而使纤维细胞壁内各种物质更加紧密地结合在一起。正因为如此,聚木糖在某种程度上阻碍了纤维素酶对纤维素的降解作用[10-11]。为了使酶解过程更加有效,必须对聚木糖进行去除。杨木以其生长迅速、适应性强、易繁殖、砍伐期短、经济价值高等特点,已成为我国北方,特别是平原地区栽培面积最大、木材产量最高的重要树种之一。阔叶木纤维细胞壁中半纤维素的含量一般为18%~23%[12],其主要成分是4-O-***葡萄糖醛酸木糖,由(1-4)-β-D-木糖构成主链,主链的C-2位被4-O-***-α-D-葡萄糖醛酸取代,C-2或C-3位发生乙酰基取代[13-15]。为了更好地了解杨木在自水解过程中细胞壁内聚木糖的分布及变化情况,本实验采用免疫荧光标记法结合共聚焦显微镜(CLSM)对其进行了研究,以共聚焦图谱中各处荧光信号的强弱来表征该处聚木糖浓度的大小;随机选取多段细胞壁对其荧光强度进行积分,所得结果来表征细胞壁中聚木糖总量。同时采用高效液相色谱(HPLC)检测法来测定细胞壁中聚木糖总量随自水解预处理强度变化的情况。1 。杨木片经筛选、洗涤、风干后,装入密封袋中备用。参照美国能源实验室标准NREL/TP-510-42618[16]和NERL/TP-510-42619[17]分析杨木片的化学组分,结果见表1。表1 ,EOMEGA);高效液相色谱仪(1200Series,美国AgilentTechnologies);立式压力蒸汽灭菌器(LDZX-30FB,上海申安医疗器械厂);冷冻o944c1403ThermoScientific);共聚焦扫描显微镜(CLSM)(OlympusIX81,美国奥林巴斯公司)。:冠,指古代帝王、官员所带的帽子。秩,俸禄。《周礼·天官·宫伯》:“行其秩叙”,郑玄注:“秩,禄禀也。”《左传·庄公十九年》:“王夺子禽、祝跪与詹父田,而收膳夫之秩。”杜预注:“秩,禄也。”《晏子春秋·杂上八》:“今请求老弱之不养,鳏寡之无室者,论而共秩焉”。张纯一校注:“秩,禄也。所以为养也。”故“冠秩”用来比喻仕宦。“冠秩”一词,《汉语大词典》未收。。取150g绝干杨木置于双缸蒸煮锅中,设定液比为1∶10;先使蒸煮锅内蒸馏水升温至100℃再放入事先准备好的杨木,之后使其升至所需温度并保温一定时间。自水解预处理结束后使自水解液迅速冷却,水解后的杨木用自来水充分洗涤以减少溶出物的粘附。(HPLC)检测法测定自水解液中聚木糖及自水解预处理后杨木中剩余聚木糖的含量。自水解液中聚木糖含量的测定:25℃下取一定量自水解液,将其用4%稀硫酸在高压灭菌锅内水解1h,之后迅速冷却;然后用G4漏斗过滤水解液,。测得木糖含量,再经系数换算得到自水解液中聚木糖的含量(相对于原料中聚木糖含量)[17]。本实验使用型号为BioradAminexHPX-87H的高压液相色谱柱。自水解后杨木中剩余聚木糖的测定:自水解后的杨木风干后磨粉,取40~60目木粉,经乙醇抽提后,,用72%硫酸在30℃下水解1h,再将水解液稀释至硫酸浓度为4%,然后在高压灭菌锅内水解1h,之后迅速冷却;用G4漏斗过滤水解液,。测得木糖含量,再经系数换算得到自水解后杨木中剩余聚木糖含量(相对于原料中聚木糖含量)[18]。。杨木中聚木糖对抗体LM11具有特异的结合性能[18],用抗体LM11对聚木糖进行标记,并用能显示荧光的二抗AlexaFluor488抗体进行染色,使其能在共聚焦显微镜下显示荧光。具体实验样品制备过程如下:随机从自水解预处理后的杨木片中挑出几片,将其裁剪成10mm(长)×1mm(宽)×1mm(厚)的小木条数根;%的戊二醛溶液中浸泡10h,以使植物组织固定;固定后用自来水冲洗12h,之后风干,再经NEG50树脂包埋后进行冷冻切片,切出厚度为5μm的薄片。用蒸馏水对切片进行脱树脂,3%的牛血清蛋白磷酸盐缓液(BSA)孵育30min,去除非特异性结合位点。之后用磷酸盐缓冲液稀释一抗大鼠单克隆抗体(聚木糖-杂交瘤细胞上清液)LM11拟糖蛋白,稀释5倍后于室温下孵育1h(可根据样品具体情况延长孵育时间),用磷酸盐缓冲液冲洗3遍,每遍5min;再经磷酸盐缓冲液稀释100倍的二抗AlexaFluor488继续孵育切片1h,之后磷酸盐缓冲液洗3遍,每遍5min,封片。采用CLSM对杨木切片进行观察、拍照。激光波长选为488nm。2 ,因此引入了强度因子这一概念来综合评价自水解预处理强度对杨木细胞壁中聚木糖分布的影响。强度因子(R0)[19]提出,其计算公式见式(1)。(1)自水解预处理条件和相应的强度因子如表2所示。表2 自水解预处理条件与相应的强度因子按照所选定的条件对杨木进行自水解预处理,自水解后测定杨木的得率及杨木中剩余聚木糖含量,结果如图1所示。自水解过程中,杨木中的糖类、木素等成分都会有不同程度的溶出,造成杨木得率的下降。随着自水解强度的增加,杨木得率和聚木糖的含量都呈不断下降的趋势。(即自水解温度160℃、保温时间90min)时,%,%的组分被溶出;在此预处理条件下,%,%约有50%的聚木糖被溶出。图1 ,对自水解液中的聚木糖占原料中总聚木糖的百分比(即聚木糖含量)及杨木中的聚木糖减少量占原料中聚木糖的百分比(即聚木糖溶出率)进行了测定,结果如图2所示。由图2可以看出,预处理后杨木中聚木糖的溶出率总是高于水解液中聚木糖的含量,但两者变化趋势一致。,%,%,这很可能是由于水解液中的部分溶出物在自水解结束后迅速冷却的过程中重新吸附在自水解预处理后的杨木上所致。WenJialong等人[20]在对预处理后木片进行扫描电子显微镜(SEM)观察时发现,水解后木片纤维表面形成很多球形颗粒物质,这可能是在高温酸性条件下从木片中溶解出的木素·碳水化合物复合体(LCC)遇冷重新沉积到纤维表面所致,经洗涤使部分粘附于木片上的这些物质流失,从而使木片中聚木糖的溶出率大于水解液中聚木糖的含量。另一方面,在自水解预处理过程中随着自水解强度因子的增加,部分溶解在水解液中的聚木糖降解成糠醛等副产物,也减少水解液中聚木糖的含量[21],使实际测得的水解液中聚木糖含量低于预处理后杨木中聚木糖的溶出率。图2 ,并用FluoviewerViewer软件对所得图像进行处理,结果如图3~图5所示。图3、图4、图5中,A为CLSM拍摄得到图片;B为A中1、2处细胞壁放大图,C为图片A中1、2处两条测量线所对应的荧光信号强度,此信号的强弱表征该处聚木糖浓度的大小。由图3可以看到,未经自水解预处理的杨木中聚木糖荧光信号强度虽然在不同地方有所波动,但其波动幅度很小,相对均匀地分布于细胞壁内。由此可以推断,在未经自水解预处理的杨木纤维细胞壁内聚木糖的浓度相对均匀。这一点与JongSikKim等人[22]在用荧光标记及金标记法观察不同生长状况的杨木时所得到的结果相一致,并且他们在其研究中指出,正常生长的杨木纤维细胞次生壁内的聚木糖呈现较强且相对均匀的分布趋势。图3 未经自水解预处理的杨木中聚木糖分布的CLSM图图4 自水解预处理后杨木中聚木糖分布的CLSM图()图5 自水解预处理后杨木中聚木糖分布的CLSM图()经自水解预处理后部分聚木糖从纤维细胞壁中溶出,(即自水解温度140℃、保温时间30min)的自水解预处理后,杨木纤维细胞壁中心部位的荧光信号比未经处理杨木的略有下降(~,),而靠近纤维细胞腔周围及胞间层的荧光信号几乎没有减弱,有些细胞壁中甚至还有少许增加,。从HPLC检测结果可知在此条件下聚木糖溶出率较少,%(相对原料中聚木糖),另外90%以上的聚木糖还存在于纤维细胞壁内。从图4中也可看出,杨木次生壁部分的荧光信号虽有所下降,但下降幅度不大,说明聚木糖的溶出量也较小。这一点与HPLC测得的结果(见图2)相吻合。(即自水解温度160℃、保温时间60min)的自水解预处理后的杨木进行了聚木糖含量的测定。从分析结果(图2)可知,在此条件下杨木中的聚木糖溶出率较大,%的聚木糖被溶出。。从图5中可以看出,相邻两个纤维细胞的细胞壁靠近胞腔部分信号最强()。与未经自水解预处理的杨木相比,表征聚木糖浓度的荧光信号强度下降程度较低,而纤维细胞壁中心部位荧光信号的强度相对未处理的杨木有明显的下降。在自水解预处理的过程中,杨木中的聚木糖随着自水解强度的增加而不断的溶出,且强度因子越大,聚木糖溶出率越大。由CLSM测定的结果可看出,在同一预处理条件下杨木中聚木糖不断溶出的过程中,纤维细胞壁中心部位的荧光信号降低程度较胞间层及细胞腔附近部位要大;同一预处理条件下细胞腔附近及胞间层部分聚木糖荧光信号减少很小;在自水解预处理强度因子较小的条件下,有些细胞的胞腔附近及胞间层聚木糖荧光信号甚至还会有所增加。这可能是由于在自水解预处理结束时,温度的下降导致尺寸较大的低聚木糖的溶解度减小,之后低聚木糖又重新沉积在细胞壁外表面所造成。[23]在对玉米秸秆进行自水解预处理时,观察到当温度从80℃下降到25℃时聚合度较大的低聚木糖溶解度有明显的降低。导致上述结果的另一种可能原因是:的球形颗粒[24],该球形颗粒中可能包含有水解过程中溶出的聚木糖,从而使纤维细胞壁表面及胞腔附近的聚木糖荧光信号比其内部强。也可以说,在自水解预处理过程中纤维细胞壁内的聚木糖发生了再分布。,可以得知聚木糖含量在自水解过程中的整体变化趋势(见图2)。通过CLSM拍摄得到各强度因子下自水解预处理后杨木中聚木糖的分布图,对每个自水解条件下CLSM图中多个区域进行荧光强度的统计并求其平均值。假设未经自水解预处理的空白样中平均荧光强度为1,计算其余各处理条件下样品中荧光强度与空白样荧光强度的比值,这样也可以表征整个纤维细胞壁内聚木糖含量的变化趋势。将上述两种方法测定的结果进行对比,得到的结果如图6所示。从图6中可以看出,采用CLSM的荧光强度检测结果与采用HPLC检测法测定的结果相比较,两者的变化趋势完全一致。图6 CLSM分析法与HPLC检测法比较3 ,聚木糖溶出率随自水解强度因子增大而增大。溶出的聚木糖一部分分布于自水解液中,一部分在水解过程中不断降解成糠醛等副产物,还有一部分在自水解预处理结束后的冷却过程中沉积在细胞壁表面,在木片洗涤过程中这部分聚木糖会有所流失。

最近更新

滚筒干燥对烟丝热物性的影响研究的开题报告 2页

临床营养学(刘青青)3、微量营养素 134页

湛江市集装箱物流信息平台的构建与评价研究的.. 2页

湘投高创投钒钨投资项目风险管理研究的开题报.. 2页

北京机房合建可行性报告 31页

游离皮片移植术临床护理路径的编制与实施的开.. 2页

温莪术内生真菌诱变株M7226的发酵及其代谢产物.. 2页

温州民间金融问题研究开题报告 2页

渤海典型海域沉积物油指纹特征研究的开题报告.. 2页

养驴厂可行性报告 29页

养殖鳄鱼项目可行性报告 42页

清代山西省疫灾地理规律与环境机理研究的开题.. 2页

公墓经营范围可行性报告 31页

深部钻孔处置模型衰变热及压力的仿真计算分析.. 2页

借鉴经验可行性报告 27页

淀粉基肥料缓控释与核素吸附材料的制备与表征.. 2页

液体静压支承系统油腔工作性能研究的开题报告.. 2页

中医:祛湿方剂 81页

安全防护施工专项方案 22页

工程项目施工安全管理 26页

浦东新区聚落的时空演变的开题报告 2页

浙江省卫生适宜技术推广应用政策评价研究的开.. 2页

高三下学期陈述报告【3篇】 4页

桩基施工挖掘机包月结算单 1页

小学低年级科学观察课方法略谈 5页

qq空间被封进入代码 28页

提高携带双J管患者的健康教育落实率泌尿科品管.. 99页

邵一尘《道传小六壬》新版资料 25页

学大教育教师教研培训考核手册V1.1整理 59页

供应商达产审核提问表 5页