文档介绍:该【人教版中学七7年级下册数学期末质量监测附解析 】是由【知识徜徉土豆】上传分享,文档一共【25】页,该文档可以免费在线阅读,需要了解更多关于【人教版中学七7年级下册数学期末质量监测附解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。人教版中学七7年级下册数学期末质量监测附解析一、() C. D.±,可以由其中一个图形通过平移得到的是( )A. B. C. ,点所在的象限是() ()①过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同位角相等;③经过两点有一条直线,并且只有一条直线;④在同一平面内, ,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2?∠3=90° B.∠1?∠2+∠3=90° C.∠1+∠2+∠3=90° D.∠2+∠3?∠1=180°() 、C、D三点,,若∠ABC=120°,∠BCD=80°,则∠CDE等于( )° ° ° °,在平面直角坐标系中有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至,…依照此规律跳动下去,点第2020次跳动至的坐标为()A. B. C. 、|y+6|+(x﹣2)2=0,则yx=、(-2,1)、,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥=2,、,,点M为CD上一点,MF平分∠∠1=57°,则∠、,已知,则___________°.十四、,它的含义是:,如果,、(3-a,3a-1),且点到两坐标轴的距离相等,、,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,、:(1)(2)十八、.(1)(2)十九、,已知∠B+∠BCD=180°,∠B=∠:∠E=∠:∵∠B+∠BCD=180°(已知),∴AB∥CD( ).∴∠B= ( ).又∵∠B=∠D(已知),∴∠D=∠.∴AD∥BE( ).∴∠E=∠DFE( ).二十、(-2,3),B(4,3),C(-1,-3).(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,、,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小辉用来表示的小数部分,你同意小辉的表示方法吗?事实上,小辉的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,:∵,即,∴的整数部分为2,:(1)的整数部分是______,小数部分是______.(2)如果的小数部分为,的整数部分为,、,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上.(1)求正方形的面积和边长;(2)建立适当的平面直角坐标系,、,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB与CD的位置关系是;(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,、,,平分,设为,点E是射线上的一个动点.(1)若时,且,求的度数;(2)若点E运动到上方,且满足,,求的值;(3)若,求的度数(用含n和的代数式表示).二十五、:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△=:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为.【参考答案】一、:B【分析】根据算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根即可得出答案.【详解】解:∵,∴,故选:B.【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x的平方等于a,即x2=a,【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C.【点睛】本题考查的解析:C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C.【点睛】本题考查的是利用平移设计图案,【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是负数,纵坐标是正数,∴点P(-3,1)在第二象限,故选:B.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).【分析】根据题目中的说法,可以判断各个选项中的说法是否正确,本题得以解决.【详解】解:①平面内,过一点有且只有一条直线与已知直线垂直,故①错误;②两条平行直线被第三条直线所截,同位角相等,如果两条直线不平行,被第三条直线所截,同位角不相等,故②错误;③经过两点有一条直线,并且只有一条直线,故③正确;④在同一平面内,不重合的两条直线不是平行就是相交,故④:B.【点睛】本题考查垂线、平行线的性质,解答本题的关键是明确题意题意,【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3?∠1=∠COE?∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3?∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:【分析】根据平方根与立方根的性质逐项判断即可得.【详解】A、,8的平方根是,此项错误;B、,此项错误;C、立方根等于本身的数有,此项错误;D、,,此项正确;故选:D.【点睛】本题考查了平方根与立方根的性质,【分析】过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点的坐标是,第4次跳动至点的坐标是,第6次跳动至点的坐标是,第8次跳动至点的坐标是,第次跳动至点的坐标是,则第2020次跳动至点的坐标是,故选:A.【点睛】本题考查了规律型:点的坐标,坐标与图形的性,、【解析】由题意得,y+6=0,x﹣2=0,解得x=2,y=﹣6,所以,yx=(﹣6)2=::36【解析】由题意得,y+6=0,x﹣2=0,解得x=2,y=﹣6,所以,yx=(﹣6)2=:、填空题10.(-2,-1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本解析:(-2,-1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,、【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,