文档介绍:该【2023届贵州省铜仁市高考数学四模试卷含解析 】是由【guwutang】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【2023届贵州省铜仁市高考数学四模试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,集合,则( )
A. B. C. D.
2.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,:
①曲线有四条对称轴;
②曲线上的点到原点的最大距离为;
③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;
④四叶草面积小于.
其中,所有正确结论的序号是( )
A.①② B.①③ C.①③④ D.①②④
3.函数的图象与函数的图象的交点横坐标的和为( )
A. B. C. D.
4.执行如图所示的程序框图,当输出的时,则输入的的值为( )
A.-2 B.-1 C. D.
5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( )
A.96里 B.72里 C.48里 D.24里
6.设则以线段为直径的圆的方程是( )
A. B.
C. D.
7.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )
A. B. C. D.
8.若实数满足不等式组则的最小值等于( )
A. B. C. D.
9.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )
A. B.3 C. D.2
10.若2m>2n>1,则( )
A. B.πm﹣n>1
C.ln(m﹣n)>0 D.
11.设全集U=R,集合,则( )
A. B. C. D.
12.正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_________.
14.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为 .
15.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.
16.某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、,,则必须角色相同;如果人一组,,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.
(1)满足有解三角形的序号组合有哪些?
(2)在(1)所有组合中任选一组,并求对应的面积.
(若所选条件出现多种可能,则按计算的第一种可能计分)
18.(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.
(1)求证:平面;
(2)求二面角的正切值.
19.(12分)已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.
(1)求和的标准方程;
(2)过点的直线与交于,与交于,求证:.
20.(12分)设抛物线过点.
(1)求抛物线C的方程;
(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.
21.(12分)已知函数,函数在点处的切线斜率为0.
(1)试用含有的式子表示,并讨论的单调性;
(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.
22.(10分)如图所示,在四面体中,,平面平面,,且.
(1)证明:平面;
(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
求出集合的等价条件,利用交集的定义进行求解即可.
【详解】
解:∵,,
∴,
故选:C.
【点睛】
本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.
2、C
【解析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于
.
【详解】
①:当变为时, 不变,所以四叶草图象关于轴对称;
当变为时,不变,所以四叶草图象关于轴对称;
当变为时,不变,所以四叶草图象关于轴对称;
当变为时,不变,所以四叶草图象关于轴对称;
综上可知:有四条对称轴,故正确;
②:因为,所以,
所以,所以,取等号时,
所以最大距离为,故错误;
③:设任意一点,所以围成的矩形面积为,
因为,所以,所以,
取等号时,所以围成矩形面积的最大值为,故正确;
④:由②可知,所以四叶草包含在圆的内部,
因为圆的面积为:,所以四叶草的面积小于,故正确.
故选:C.
【点睛】
本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,,可通过替换方程中去分析证明.
3、B
【解析】
根据两个函数相等,求出所有交点的横坐标,然后求和即可.
【详解】
令,有,,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.
【点睛】
本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.
4、B
【解析】
若输入,则执行循环得
结束循环,输出,与题意输出的矛盾;
若输入,则执行循环得
结束循环,输出,符合题意;
若输入,则执行循环得
结束循环,输出,与题意输出的矛盾;
若输入,则执行循环得
结束循环,输出,与题意输出的矛盾;
综上选B.
5、B
【解析】
人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.
【详解】
由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,
则,解得,从而可得,故.
故选:.
【点睛】
本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.
6、A
【解析】
计算的中点坐标为,圆半径为,得到圆方程.
【详解】
的中点坐标为:,圆半径为,
圆方程为.
故选:.
【点睛】
本题考查了圆的标准方程,意在考查学生的计算能力.
7、A
【解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.
【详解】
由,,可知平面.
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.
由此易知外接球球心应在棱柱上下底面三角形的外心连线上,
记的外心为,由为等边三角形,
可得.又,故在中,,
此即为外接球半径,从而外接球表面积为.
故选:A
【点睛】
本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.
8、A
【解析】
首先画出可行域,利用目标函数的几何意义求的最小值.
【详解】
解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)
由得,
由得,平移,
易知过点时直线在上截距最小,
所以.
故选:A.
【点睛】
本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.
9、D
【解析】
根据抛物线的定义求得,由此求得的长.
【详解】
过作,垂足为,,所以
,所以,所以,所以.
故选:D
【点睛】
本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.
10、B
【解析】
根据指数函数的单调性,结合特殊值进行辨析.
【详解】
若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;
而当m,n时,检验可得,A、C、D都不正确,
故选:B.
【点睛】
此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.
11、A