1 / 18
文档名称:

2025年安徽六校教育研究会高三理零模试卷及答案版含解析.doc

格式:doc   大小:1,883KB   页数:18页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2025年安徽六校教育研究会高三理零模试卷及答案版含解析.doc

上传人:hezhihe 2025/4/9 文件大小:1.84 MB

下载得到文件列表

2025年安徽六校教育研究会高三理零模试卷及答案版含解析.doc

文档介绍

文档介绍:该【2025年安徽六校教育研究会高三理零模试卷及答案版含解析 】是由【hezhihe】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2025年安徽六校教育研究会高三理零模试卷及答案版含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2025年安徽六校教育研究会高三理零模试卷及答案版
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为(  )
A. B. C.或- D.和-
2.已知为虚数单位,复数满足,则复数在复平面内对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知,则的大小关系是( )
A. B. C. D.
4.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )
A. B. C. D.
5.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( )
A. B. C. D.
6.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是( )
A. B.
C. D.
7.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为(  )
A. B. C. D.
8.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )
A. B. C. D.
9.已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )
A. B. C.或 D.
10.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( )
A.2或 B.3或 C.4或 D.5或
11.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )
A. B. C. D.
12.设为自然对数的底数,函数,若,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,若,则实数的取值范围为__________.
14.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°,则四面体
OABC的外接球的半径为_________.
15.在平面直角坐标系中,双曲线的焦距为,若过右焦点且与轴垂直的直线与两条渐近线围成的三角形面积为,则双曲线的离心率为____________.
16.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.
(1)求抛物线的方程;
(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.
18.(12分)在△ABC中,角所对的边分别为向量,向量,且.
(1)求角的大小;
(2)求的最大值.
19.(12分)设,,,.
(1)若的最小值为4,求的值;
(2)若,证明:或.
20.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.
(1)求证:四边形ACC1A1为矩形;
(2)求二面角E-B1C-A1的平面角的余弦值.
21.(12分)已知函数,其中.
(1)当时,求在的切线方程;
(2)求证:的极大值恒大于0.
22.(10分)已知函数的最大值为,其中.
(1)求实数的值;
(2)若求证:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.
【详解】
如图,直线过定点(0,1),
∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,
∴由对称性可知k=±.
故选C.
本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.
2.B
【解析】
求出复数,得出其对应点的坐标,确定所在象限.
【详解】
由题意,对应点坐标为 ,在第二象限.
故选:B.
本题考查复数的几何意义,考查复数的除法运算,属于基础题.
3.B
【解析】
利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.
【详解】
依题意,函数与函数关于直线对称,则,
即,又,
所以,.
故选:B.
本题主要考查对数、指数的大小比较,属于基础题.
4.D
【解析】
由题知,又,代入计算可得.
【详解】
由题知,又.
故选:D
本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.
5.C
【解析】
求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得
【详解】
抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以.
故选:C
本小题主要考查抛物线的弦长的求法,属于基础题.
6.D
【解析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.
【详解】
因为,,
故.
又,故.
因为当时,函数是单调递减函数,
所以.
因为为偶函数,故,
所以.
故选:D.
本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.
7.C
【解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.
【详解】
设分别是的中点
平面
是等边三角形

平面 为与平面所成的角
是边长为的等边三角形
,且为所在截面圆的圆心
球的表面积为 球的半径
平面
本题正确选项:
本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.
8.C
【解析】
根据三视图还原为几何体,结合组合体的结构特征求解表面积.
【详解】
由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.
本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.
9.D
【解析】
根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.
【详解】
依题意,得,即.
将代入可得,,
解得(舍去).
故选:D.
本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.
10.C
【解析】
先根据弦长求出直线的斜率,再利用抛物线定义可求出.
【详解】
设直线的倾斜角为,则,
所以,,即,

联立,解得和,所以;
同理,当直线的方程为.,综上,.
本题主要考查直线和抛物线的位置关系,,一般考虑抛物线的定义.
11.D
【解析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.
【详解】
双曲线与互为共轭双曲线,
四个顶点的坐标为,四个焦点的坐标为,
四个顶点形成的四边形的面积,
四个焦点连线形成的四边形的面积,
所以,
当取得最大值时有,,离心率,
故选:D.
该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.
12.D
【解析】
利用与的关系,求得的值.
【详解】
依题意,
所以
故选:D
本小题主要考查函数值的计算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.
【详解】
作出函数的图如下所示,
观察可知,函数为偶函数,且在上单调递增,
在上单调递减,故

故实数的取值范围为.
故答案为:
本题考查利用函数奇偶性及单调性解不等式. 函数奇偶性的常用结论: