文档介绍:该【云南省凤庆二中2023年高三第二次联考数学试卷含解析 】是由【zhimenshu】上传分享,文档一共【21】页,该文档可以免费在线阅读,需要了解更多关于【云南省凤庆二中2023年高三第二次联考数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.的展开式中有理项有( )
A.项 B.项 C.项 D.项
2.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是( )
A. B. C. D.
3.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为( )
A. B. C. D.
4.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )
A. B. C. D.
5.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( )
A. B.
C. D.
6.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )
A. B. C.16 D.32
7.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,( )
A.②③ B.②③④ C.①④ D.①②③
8.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )
A. B. C. D.
9.曲线在点处的切线方程为( )
A. B. C. D.
10.已知双曲线 (a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是( )
A. B.(1,2), C. D.
11.某程序框图如图所示,若输出的,则判断框内为( )
A. B. C. D.
12.执行如图所示的程序框图,若输入的,则输出的( )
A.9 B.31 C.15 D.63
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,若函数有6个零点,则实数的取值范围是_________.
14.双曲线的焦点坐标是_______________,渐近线方程是_______________.
15.利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是______
16.的展开式中,的系数为_______(用数字作答).
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数f(x)=x-lnx,g(x)=x2-ax.
(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函数h(x)图像上任意两点,且满足>1,求实数a的取值范围;
(3)若∃x∈(0,1],使f(x)≥成立,求实数a的最大值.
18.(12分)如图,在中,,,点在线段上.
(1)若,求的长;
(2)若,,求的面积.
19.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:
月份
1月
2月
3月
4月
5月
6月
7月
8月
月养殖量/千只3
3
4
5
6
7
9
10
12
月利润/十万元
生猪死亡数/只
29
37
49
53
77
98
126
145
(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;
(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程().
(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,,试估计:该月利润约为多少万元?
附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,
参考数据:.
20.(12分)己知,函数.
(1)若,解不等式;
(2)若函数,且存在使得成立,求实数的取值范围.
21.(12分)已知,,求证:
(1);
(2).
22.(10分)已知函数.
(1)讨论的单调性;
(2)若,设,证明:,,使.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.
【详解】
,,
当,,,时,为有理项,共项.
故选:B.
【点睛】
本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.
2、A
【解析】
结合已知可知,可求,进而可求,代入,结合,可求,即可判断.
【详解】
图象上相邻两个极值点,满足,
即,
,,且,
,,
,,,
当时,为函数的一个极小值点,而.
故选:.
【点睛】
本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.
3、B
【解析】
求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,,,再由等差数列中项性质和离心率公式,计算可得所求值.
【详解】
设双曲线的一条渐近线方程为,
且,由,可得以为圆心,为半径的圆与渐近线交于,
可得,可取,则,
设,,则,,,
由,,成等差数列,可得,
化为,即,
可得,
故选:.
【点睛】
本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.
4、C
【解析】
设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.
【详解】
设的中点为,连接,因此有,而,而平面,,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:
因此有,设平面的法向量为,所以有
,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.
故选:C
【点睛】
本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.
5、A
【解析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.
【详解】
椭圆的离心率:,( c为半焦距; a为长半轴),
设卫星近地点,远地点离地面距离分别为r,n,如图:
则
所以,,
故选:A
【点睛】
本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.
6、A
【解析】
几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.
7、C
【解析】
根据直线与平面,平面与平面的位置关系进行判断即可.
【详解】
根据面面平行的性质以及判定定理可得,若,,则,故①正确;
若,,平面可能相交,故②错误;
若,,则可能平行,故③错误;
由线面垂直的性质可得,④正确;
故选:C
【点睛】
本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.
8、D
【解析】
由圆与相切可知,圆心到的距离为2,,由此求出的值,利用离心率公式,求出e.
【详解】
由题意得,,
,.
故选:D.
【点睛】
本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.
9、A
【解析】
将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.
【详解】
曲线,即,
当时,代入可得,所以切点坐标为,
求得导函数可得,
由导数几何意义可知,
由点斜式可得切线方程为,即,
故选:A.
【点睛】
本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.
10、A
【解析】
若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.
【详解】
已知双曲线的右焦点为,